KORLOY Tools Selection Guide

Tools Selection Guide

Turning

Grooving

Threading

Milling

Endmill

Hole Making

Tooling systems

Smart Factory

	01 Turning	
6	• Line-up	0
	Tool selection guide	
	Useful cutting tip	1
	Troubles in cutting and solutions	1
	02 Grooving	
	• Line-up	1:
	Grade selection guide	
	Tool selection guide	
	Useful cutting tip	
	Troubles in cutting and solutions	
	03 Threading	
	• Line-up	3
	Tool selection guide	
	Useful cutting tip	
	Troubles in cutting and solutions	
	04 Milling	

• Line-up

Grade selection guide

Tool selection guide

Useful cutting tip

Troubles in cutting and solutions

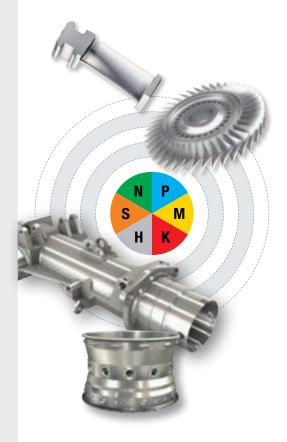
39

41

42

49

50


05 Endmill	
• Line-up	52
Tool selection guide	
Useful cutting tip	
Troubles in cutting and solutions	
16 Hole Making	
• Line-up	57
Tool selection guide	59
Useful cutting tip	60
Troubles in cutting and solutions	61
07 Tooling systems	
	00
DINOX Map	62
08 Smart Factory	
Smart Factory Solution Map	66

☑ Pre-Checklist for tool selection

Machining operation analysis sequence **Workpieces** Work type, method, workpiece material and quantity Equipment -Machine parameters **Cutting tools** Tool selection **Conditions and usages** Cutting conditions and applications **Problem-solving** Corrective actions and solutions

- To analyze machining operation, follow the steps mentioned above.
- From tool selection to troubleshooting, refer to the respective chapters for each tool category.
- For inspection criteria regarding workpieces and equipment, please refer to the detailed documentation on the following page.
- If you have any inquiries or questions, please contact the relevant sales office on the last page for a detailed explanation.

1) Workpieces –

Section	Examples					
Production	Castings	Selection of casting-specific material				
method	Forgings	Selection of high hardness grade				
	Sheared chip	Selection of productivity-enhancing tool (Maximum no. of tooth)				
Chip shape	Built-up chip	Selection of tool with maximum chip pocket capacity and surface treatment				
Hardness	High hardness chip	Selection of High Grade + Rough C/B				
	Low hardness chip	Selection of Low Grade + Rough C/B				
Matadal	Steel	Selection of Medium C/B + steel specific grade				
Material	STS, HRSA	Selection of Light C/B + hard-to-cut material specific grade				

→ Workpiece shapes

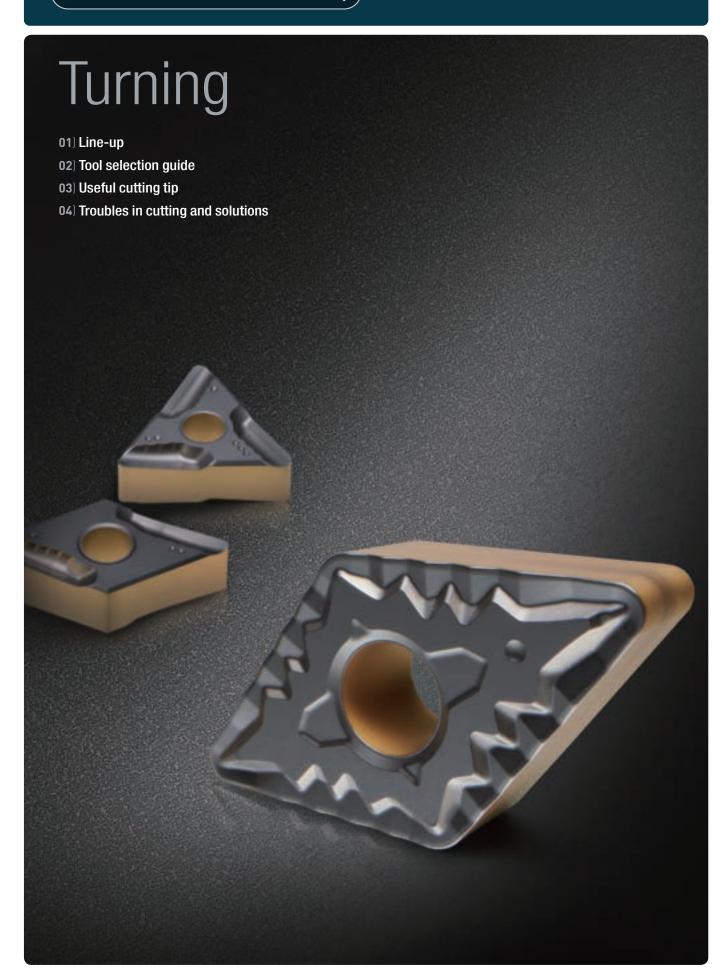
Section	Examples					
Surface	Curved surface	Tools for profiling + Tool interference check				
Suriace	Flat surface	Tools for facing + maximum machining dia. check				
	Shallow hole	Selection of tools with low overhang				
Hole	Deep hole	Selection of tools for deep hole cutting				
:	Thin side wall	Selection of tools with high fastening stability				
Side wall	Normal side wall	Selection of general tools for shouldering				
Slotting		Selection of tools suitable for slot shape and size				

⇔ Workpiece tolerance

Section		Examples
Di	Roughing	Application of cost-effective tools + coating material
Dimensional accuracy	Finishing	Consideration of applying precision-grade tools + non-coated materials
Surface finish		Consideration of applying wipers + non-coated materials

2) Equipment

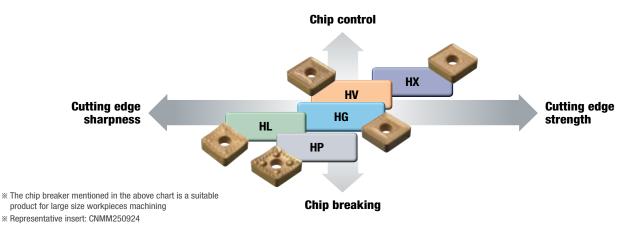
← Equipment


Section	Examples						
Equipment	Low horsepower	Selection of low cutting resistant tools					
power	High horsepower	Selection of high-productivity tools					
Equipment	Good	Reviewing custom tools					
stability (Model year, condition)	Aged	ISO tool review					
	General facilities	ISO tool review					
Number of axis	Multiaxial equipment	Using tools with high fastening stability					
Clamping workpiece	Wrong clamping	Reassessing equipment clamping status					

← Tooling System

Section	Examples					
Overhang	Short	Using general tools				
Overnang	Long	Selection of low approach angle and Anti-vibration tools				
A.b	Small (BT30)	Application of compact tools with fewer teeth				
Arbor size	Large (BT50)	Selection of high-productivity tools, application of multiple teeth				
Run-out	Defect	Checking spindle condition and reviewing equipment overhaul				

KORLOY Tools Selection Guide


Q

01) Line-up

← Heavy inserts (For large size workpieces in wind power, ships, railways, etc. industries)

(Automobiles, general machinery parts, etc.)

Workpiece		Single- sided i	nsert (Positive)			Double- sided i	nsert (Negative)	
workpiece	Finishing	Medium to finishing	Medium cutting	Roughing	Finishing	Medium to finishing	Medium cutting	Roughing
P Coating	FP FP	VL	MP	C25	VL	LP LP	MP	GR
P Cermet	FP FP	VL.	MP	C25	VL	VB	VQ	GM
M	FP FP	VL.	MP	C25	VP2	MP	MM	RM
K			MP	C25	MP	B25	MK	RK
S	€ IN	MU	MP		VP1	VP2	VP3	VP4
N	AK		AM	AR			HA	

^{**} The table represents chip breakers for different workpiece material types, and the selection of chip breakers based on chip control or toughness issues can be found in detail on the back page.

← Small precision machining inserts Auto Tools (Electronics, electricity, medical components, etc.)

^{*} The product line in the table consists of Auto Tools products for small precision component machining.

^{*} Representative insert: CNMG120408

^{*} Representative insert: CCGT09T302.

Coated Cermet

02) Grade selection guide

1-1 Steel Turning

1-											
9	ISO			Grad	e - Recor	nmended	d cutting	speed(m/min)			
Workpiece	VC		Wea	r resista	nce 🛑			Tou	ghness		
≶	VC (m/m	in)	P05	P15	P20	P25	P30	P35	P40	P45	
	40	00	NC3205 (230 ~480)								
	3!	50		NC3215 (170 ~420)							
	3(00			NC5320 (150 ~370)						
	2	50				NC3225 (150 ~370)					
	20	00					NC3030 (110 ~260)	NC3235 (100 ~280)			
	1!	50						PC5300 (100 ~250)			
	1(00							PC5400 (80 ~160)		
	Annlication		Chip breaker (Recommended cutting conditions)								
	Appli	cation				Recomme					
D	Appli	cation		Chip t Chip cor		Recomme			ditions) cutting-e	dges	
P	Appli	Roughing				Recomme •				GR (0.3 ~0.7)	
P	Appli	Medium Roughing cutting				•			HR (0.3	GR (0.3	
P	Negative	Roughing				LP (0.12 ~0.35)	VM (0.2	MP (0.2	HR (0.3 ~0.65) HM (0.25	GR (0.3	
P		Medium Roughing cutting	VL (0.05 ~0.25)		VC (0.10	• LP (0.12	VM (0.2 ~0.4) CP (0.12	MP (0.2	HR (0.3 ~0.65) HM (0.25	GR (0.3	
P		ishing Medium to Medium Roughing finish cutting cutting	VL (0.05	VB (0.06	VC (0.10 ~0.32) VF (0.07	• LP (0.12	VM (0.2 ~0.4) CP (0.12	MP (0.2	HR (0.3 ~0.65) HM (0.25	GR (0.3	
P		Finishing Medium to Medium Roughing cutting	VL (0.05	VB (0.06	VC (0.10 ~0.32) VF (0.07	• LP (0.12	VM (0.2 ~0.4) CP (0.12	MP (0.2 ~0.45)	HR (0.3 ~0.65) HM (0.25 ~0.5)	GR (0.3	
P		wiper Finishing Medium to Medium Roughing finish cutting cutting	VL (0.05	VB (0.06	VC (0.10 ~0.32) VF (0.07	• LP (0.12	VM (0.2 ~0.4) CP (0.12	WP (0.2 ~0.45) VW (0.15 ~0.50) C25 (0.10	HR (0.3 ~0.65) HM (0.25 ~0.5)	GR (0.3	

- $\ensuremath{\mathrm{\#}}$ The recommended cutting speed mentioned above is based on SM45C carbon steel.
- ** Recommended cutting conditions for different cutting materials and feed rates may be subject to change.

1-2 Steel Turning (Heavy)

* Inscribed circle, 19 or greater

8		IS0	Grade - Recommended cutting speed(m/min)								
Workpiece			Wear r	esistance <			Toughne	SS			
W	VC (m/min)		P05	P15	P20	P25	P35	P40			
	130		NC3205 (115 ~150)								
	1:	20		NC515H (110 ~135)							
	1.	10			NC520H (100 ~125)						
	100					NC525H (90 ~115)					
	80						NC3235 (70 ~105)				
P	40							NCM535 (60 ~95)			
	Annli	cation	Chip breaker (Recommended cutting conditions)								
	, the		Ch	th of cuttin	g-edges						
		Roughing						(0.6 ~1.5)			
	Negative	Medium cutting				HG (0.4 ~1.2)	HV (0.5 ~1.4)				
	Neg	Medium to finish cutting		HP (0.4 ~1.0)	HL (0.4 ~1.1)						
		Finishing	HD (0.35 ~0.8)								

Workpiece	Workpiece materials	ISO (DIN)	AISI	Cutting conditions (Adjusting cutting speeds for each cutting material based on the reference table by 100%.)			
Š				Cutting speed (m/min)	Feed	Depth of cut	
eel	C=0.10~0.25%	(C22)	1020	105%			
Carbon steel	C=0.25~0.55%	C45	1045	100% (Standard)	100% (Standard)	100% (Standard)	
Ça	C=0.55~0.80%	C55	1055	90%			
-	Unhardened	42CrMo4	4140(H)	86%			
Alloy steel	Hardened	42CrMo4	4140(H)	78%	90%		
Alic	High Manganese (12~14% Mn)	22Mn6	1522	65%			

- ** The first and second recommended classifications are divided into NC3200 grade for smaller than ISO19, and a separate heavy grade for ISO19 and above.
- ${\it \%} \ \, {\it The lineup of recommended grades provides cutting speed information, while the chip breaker lineup provides recommended feed rates and entry conditions.}$

Coated Cermet

CVD PVD

02) Grade selection guide

1-3 Steel Turning (Cermet)

9	VC (m/min)			Grade - Re	commended	d cutting sp	eed(m/min)				
Workpiece			Wear re	esistance <		Toughness					
8			P05	P10	P15	P20	P25	P30			
	3	50		CC1015 (250 ~450)							
	3(00			CN1500 (150 ~350)						
	2	50				CC1025 (150 ~320)					
	200						CN2500 (130 ~300)				
	Appli	cation	Chip breaker (Recommended cutting conditions)								
			Chi	Chip control • Strength of cutting-							
	Negative	Roughing						GM (0.3 ~0.65)			
P		Medium cutting			VQ (0.2 ~0.4)	VM (0.2 ~0.45)	HM (0.25 ~0.5)				
		Medium to finish cutting		VB (0.12 ~0.35)	CP (0.12 ~0.38)						
		Finishing	VL (0.05 ~0.25)	VG (0.06 ~0.28)							
		Roughing						C25 (0.10 ~0.30)			
	Positive	Medium cutting				HMP (0.07 ~0.23)	MP (0.08 ~0.25)				
		Finishing	FP (0.02 ~0.10)	VL (0.05 ~0.12)	VF (0.06 ~0.16)						

Workpiece	Workpiece materials	ISO (DIN)	AISI	Cutting conditions (Adjusting cutting speeds for each cutting material based on the reference table by 100%.)		
ž				Cutting speed (m/min)	Feed	Depth of cut
-	C=0.10~0.25%	(C22)	1020	105%		
Carbon steel	C=0.25~0.55%	C45	1045	100% (Standard)	100% (Standard)	100% (Standard)
	C=0.55~0.80%	C55	1055	90%		
steel	Unhardened	42CrMo4	4140(H)	86%	90%	
Alloy steel	Hardened	42CrMo4	4140 (H)	78%	90 70	
Sintered ferrous alloy	Fe-Cu-C (C=0.2~1.0%)	SMF4030	-	70%	70%	

^{*} Recommended cutting conditions for different cutting materials and feed rates may be subject to change.

Coated Cermet

1st Recommended

02) Grade selection guide

Stainless steel Turning

0	\ ISO			Grade	e - Recor	nmended	d cutting	speed(m	/min)		
Workpiece	/		Wea	r resista				• •	ghness		
Wo	vc (m/min)		M05	M10	M15	M20	M25	M30	M35	M40	
	2	50			NC9115 (220~ 260)						
	20	00	PC8105 (120~ 230)				NC9125 (190~ 230)		NC3235 (180~ 220)		
	15	50		PC8110 (110~ 210)		PC8115/ PC8120 (100~ 200)	PC5300 (80~ 190)		NC9135 (160~ 200)		
	125							PC9035 (70~160) PC9030 (80~180)			
	100								PC5400 (80~ 140)		
	Appli	cation	Chip breaker (Recommended cutting conditions) Chip control • Strength of cutting-edges								
M		5		Chip con	troi 🖛	•	Stre	_	cutting-e	dges	
		Roughing						GS (0.23~ 0.50)	(0.25~ 0.55)		
	Negative	Medium cutting			MP (0.2~ 0.45)	HS (0.2~ 0.47)	MM (0.2~ 0.50)				
				VP2 (0.1~ 0.4)							
		Roughing Finishing						C25 (0.10~ 0.30)			
	Positive	Medium cutting			HMP (0.07~ 0.23)	MP (0.08~ 0.25)					
		Finishing	FP (0.02~ 0.10)	VL (0.05~ 0.12)							

3 Cast iron Turning

8	\setminus	IS0		Grade - Re	commende	d cutting sp	eed(m/min)			
Workpiece	\		Wear re	esistance (•	Toughne	SS		
8	VC (m/m	in)	K05	K10	K15	K20	K25	K30		
	5	00	NC6310 (300~ 500)							
	4	00			NC6315 (200~ 400)					
	300					NC5320 (150~ 330)				
	200 150						NC5330 (110~ 270)			
					PC8110 (95~ 180)		PC5300 (75~ 140)			
K	1	00						PC5400 (65~ 120)		
	Annli	cation	(Chip breaker (Recommended cutting conditions)						
	7.46		Ch	ip control <	•	Streng	th of cutting	g-edges		
		Roughing				VR (0.25~ 0.65)	RK (0.25~ 0.7)	MA (0.3~ 0.7)		
	Negative	Medium cutting		MK (0.2~ 0.5)	B25 (0.25~ 0.55)					
		Medium to finish cutting	MP (0.1~ 0.45)							
	Positive	Roughing				C25 (0.10~ 0.30)				
	Posi	Medium to finish cutting		MP (0.08~ 0.25)						

^{**} Recommended cutting speed avobe is for austenitic stainless steel STS304 cutting.

 $^{{\}it \#} \ {\it Recommended cutting conditions for different cutting materials and feed rates may be subject to change.}$

Workpiece	ISO (DIN)	AISI	Cutting conditions (Adjusting cutting speeds for each cutting material based on the reference table by 100%.)			
			Cutting speed (m/min)	Feed	Depth of cut	
Austenitic	X5CrNi 18-9	304	100% (Standard)	100%		
Austennic	X5CrNiMo17-12-2	316	100%	(Standard)	100% (Standard)	
	-	-	110%			
Ferritic, martensitic	X12Cr13	410	105%	90%		
	X6Cr17	430	100%			
Precipitation series	X5CrNiCuNb 16-4	S17400	70%	80%		
Duplex	(X2CrNiMoN22-5-3)	S31803	45%	70%		

^{**} For large cutting materials (ø300 and above), CVD grades are recommended, while for small cutting materials (ø150 and below), PVD grades are recommended.

Workpiece	ISO (DIN)	AISI	Cutting conditions (Adjusting cutting speeds for each cutting material based on the reference table by 100%.)			
			Cutting speed (m/min)	Feed	Depth of cut	
Gray cast iron	250	No35B	100% (Standard)	100%		
dray cast non	350	No45b	95%	(Standard)	100% (Standard)	
	400-18	60-40-18	94%			
Nodular SG iron	500-7	65-45-12	90%	90%		
Nouulai 30 IIVII	600-3	80-55-06	85%	9070		
	700-2	100-70-03	82%			

^{**} Recommended cutting conditions for different cutting materials and feed rates may be subject to change.

Cemented carbide

Diamond

Coated Cermet

CVD

PVD

DLC coating

02) Grade selection guide

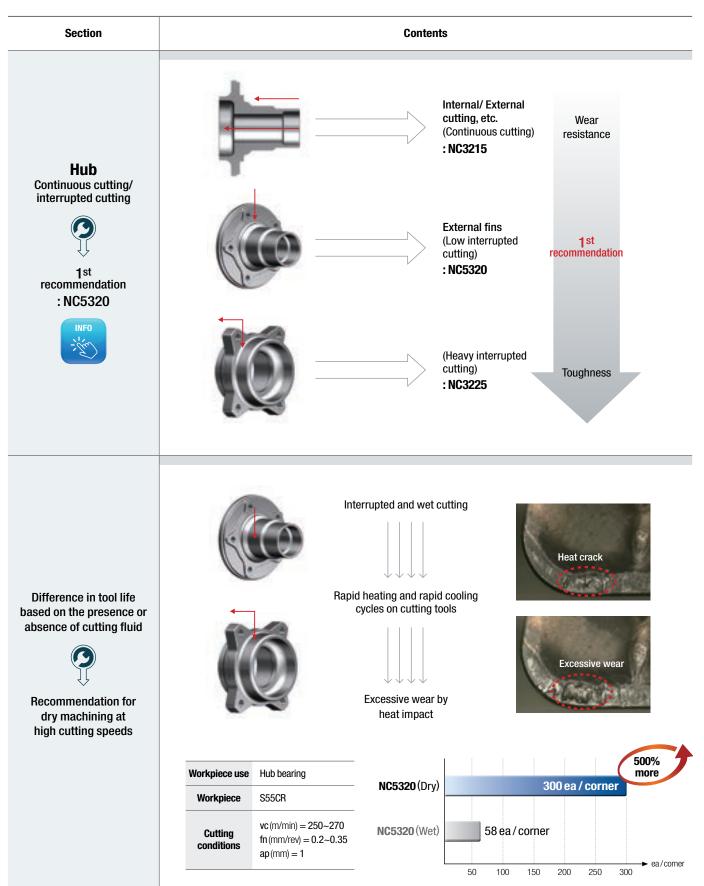
Heat resisting alloy Turning

4		IS0		Grade -	Recomme	ended cutt	ing speed	(m/min)		
Workpiece	\		Wear	resistanc		•		oughness		
Mo	VC (m/min)		S05	S10	S15	S20	S25	S30	S35	
	8	30	PC8105 (40~ 70)							
	7	0		PC8110 (35~ 65)						
	6	0								
	5	60			PC8115 (30~ 60)	PC8120 (30~ 60)	PC5300 (20~ 60)			
	40				NC9125 (20~ 60)		PC9035 (30~ 50)	NC9135 (20~ 60)		
	30							PC5400 (20~ 50)		
S	Δnnli	cation	Chip breaker (Recommended cutting conditions)							
			Chip control • Strength of cutting-edges							
		Roughing					VP4 (0.15~ 0.45)			
	ıtive	Medium cutting				VP3 (0.12~ 0.42)				
	Negative	Medium to finish cutting			VP2 (0.1~ 0.4)					
		Finishing		VP1 (0.07~ 0.2)						
	tive	Medium cutting				MU (0.07~ 0.23)	MP (0.08~ 0.25)			
	Positive	Medium to nish cutting	LU (0.03~ 0.08)	VP1 (0.04~ 0.10)	VL (0.05~ 0.12)					

5 Aluminium Turning

g ISO		IS0	G	rade - Recomi	mended cuttin	g speed(m/mi	n)			
Workpiece			Wear resi	stance 🛑	•	Tough	ness			
8	VC (m/m	in)	N05	N10	N15	N20	N25			
	12	200	ND3000/ ND2100 (160~ 1200)							
	8	00		PD1005 (160~ 800)						
	6	00			PD1010 (160~ 450)					
	300					H01 (160~ 300)				
	200						H05 (60~ 220)			
N	Annli	cation	Chip breaker (Recommended cutting conditions)							
	uhhii	Cation	Chip control Strength of cutting-edges							
	Negative	Medium cutting			HA (0.1~ 0.5)					
		Roughing			AR (0.05~ 0.5)					
	Positive	Medium cutting		AM (0.04~ 0.45)						
		Finishing	AK (0.03~ 0.4)							

Workpiece	ISO (DIN)	AISI	Cutting conditions (Adjusting cutting speeds for each cutting material based on the reference table by 100%.)		
			Cutting speed (m/min)	Feed	Depth of cut
Ti alloy	Ti-6Al-4V	Ti-6Al-4V	110%	110%	
Ni series	Inconel625	Inconel625	100%	100% (Standard)	100% (Standard)
NI SCIES	Inconel718	Inconel718	(Standard)		
Co series	Stellite	Stellite	85%	90%	
Fe series	-	Inconel909	03%	3 070	


×	The recommended cutting spee	d mentioned above is base	ed on Inconel 718, a nickel-base	d allov

Workpiece	ISO (DIN)	AISI	Cutting conditions (Adjusting cutting speeds for each cutting material based on the reference table by 100%.)			
			Cutting speed (m/min)		Depth of cut	
Graphite	Graphite	-	110%	100% (Standard)		
Al alloy	G9GK0-ALIi7Mg GD-AlSi10Mg GD-AlSi9Cu3	-	100% (Standard)	90%	100% (Standard)	
Composite materials	CFRP	-	90%			

 $[\]ensuremath{\mathrm{\#}}$ Recommended cutting conditions for different cutting materials and feed rates may be subject to change.

03) Useful cutting tip

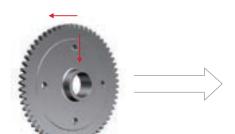
03) Useful cutting tip

Section	Contents				
Insert fracture/ defect issues during avy interrupted machining Holder shim replacement	3) Analysis of fracture causes (clan Contact area comparison between the clamping Normal shim - Stable clamping Normal shim - Stable clamping				
stainless steel cutting, ne application areas of CVD and PVD coatings For large workpieces (Ø300 and above) VD coating is preferred. For small workpieces (Ø100 and below) VD coating is preferred.	Ø300 and above Ø200 Ø100 and below Ø30	Heat resistance Wear resistance Recommendation of CVD grades (High heat resistance) Both CVD and PVD grades can be recommended Fracture resistance Chipping resistance (High chipping resistance)			

03) Useful cutting tips - Cermet

Section Contents Automotive and Wear machinery components External diameter resistance (carbon steel and alloy steel -(Continuous cutting) continuous machining of : CC1015 external and internal diameter) External diameter (Continuous cutting) **1**st recommendation : CC1500 1st recommendation Slotting/External For continuous cutting diameter : CC1015 (Interrupted cutting) 1st recommendation : CC1025/CN2500 Toughness For interrupted cutting : CN2500

Automotive components (sintered alloyinterrupted cutting)



1st recommendation : CC1015

CN1500 2nd recommendation

> : CC1025 CN2500

Slotting/External diameter (Continuous cutting) : CC1015/CN1500

Slotting/External diameter (Interrupted cutting) : CC1025/CN2500

Toughness

1st

recommendation

Section	TPMT110304	SCMT09T308	SNMG120408	VNMG160408
Cutting speed vc (m/min)	250	200	100 ~ 150	150 ~ 180
RPM n (rpm)	1,650 ~ 2,500	1,650 ~ 2,500	1,650 ~ 2,500	1,650 ~ 2,500
Feed fn (mm/rev)	0.08 ~ 0.12	0.08 ~ 0.12	0.2 ~ 0.25	0.12 ~ 0.3
Depth of cut ap (mm)	0.2	0.4	0.5 ~ 2.0	0.2 ~ 0.4
Diameter and length of workpiece	Smaller than 100 mm			
Coolant	Wet	Wet	Wet	Wet

• Representative inserts used in sintered alloy components

- TPMT110304-MP - SCMT09T308-HMP

- TCMT110204-B25 - SNMG120408-VQ - VNMG160408-VF - VBMT160404-MP

• To minimize the variation in tool life when machining sintered alloy components, the primary recommendation is to use medium-rough to medium chip breakers.

03) Useful cutting tips - Heavy cutting

Section **Contents** 1) In vertical cutting of a flange 1st recommended [Chip breaker features] chip breaker for heavy cutting Slotting/external Rigidity of diameter cutting cutting edge (vertical direction of holders) : 1st recommended HV 1st recommended chip breaker for vertical machining : HV 2) In horizontal cutting of a shaft 1st recommended chip breaker for horizontal machining **External diameter cutting** : HG (horizontal direction of Wear holders) resistance : 1st recommended HG

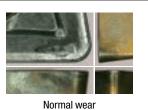
Cases of insert damage caused by screw issues and solutions

Recommended to use genuine screws and holders

ullet Checking the screw head protrusion ullet Suspecting the insert attachment condition → Verifying the screw size

Section

Damaged holder + counterfeit screw



Contents

Undamaged holder + genuine screw	
	Stable clamping

Abnormal wear/ fracture

04) Troubles in cutting and solutions

Troubles	Factors	Solutions
	→ Selection of a wrong chip breaker for the application area	→ Selection of an appropriate chip breaker that matches the cutting conditions Refer to the tool selection guide p. 7
Chip jamming The phenomenon where chips do not break so the long chip is tangled around	ightarrow Too low feed	→ Increased feed Increased fn
the tools or a workpiece	→ Low depth of cut	→ Increased depth of cut
A GE	→ Too large nose radius	→ Select smaller nose radius
	→ Improper lead angle	→ Select a holder with large lead angle or shape
Excessive chip fragmentation The excessive formation of	ightarrow Too high feed	→ Decreased feed Lower fn
very short chips due to high cutting forces, leading to shortened tool life and tool damage		→ Select a chip breaker designed for higher feed MP MP C/B Medium to finishing
246 43	ightarrow Too small nose radius	→ Select larger nose radius
Built-up-edge/ welding The simultaneous occurrence of burrs and chipping,	→ Low speed	→ Optimize the cutting speed Higher vc
causing accumulated burrs to detach along with the insert material, resulting in damage	→ Low feed	→ Optimize the feed Higher fn
	→ Negative insert shape	→ Select a positive shape 7°, Positive and one-sided insert Negative and double-sided insert

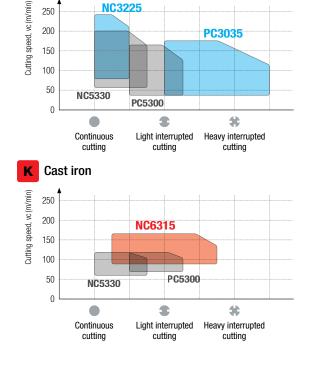
04) Troubles in cutting and solutions

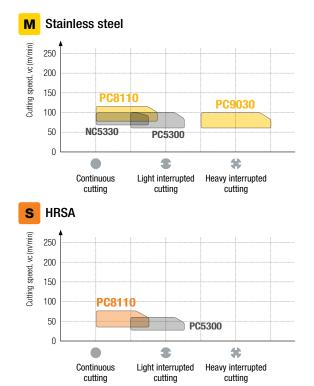
Troubles	Factors	Solutions
Surface roughness defect Rough surface finish and	→ Leaving marks on the surface as chips break towards the workpiece	Choose a chip evacuation configuration that discharges chips far away Positive rake angle (+) Relief angle Relief angle Relief angle
fail to meet the tolerance requirements	→ Rough surface due to notch wear	→ Select a cermet grade Cermet(VQ) CVD, PVD CN1500/2500
		→ Reduce cutting speed Reduced vc
	→ High feed and too small cutting radius	 → Select a wiper insert or larger nose radius → Lower feed Wiper insert rwiper Fixisting insert rwiper Fixisting insert rwiper Insert rwiper Truly represent the properties of th
! Burr formation The formation of burrs at the end of cutting when the cutting edge deviates from the workpiece	→ Dull cutting edge	ightarrow Use a sharp insert
Burr	→ Notch wear on the part of depth of cut	→ Select larger nose radius
	→ Improper lead angle	→ Use larger lead angle Small lead angle Small lead angle
• Vibration Tool scratched the workpiece due to chattering	→ Too large nose radius	→ Select smaller nose radius
Vibration	→ Excessive front wear of the cutting edge	→ Reduce cutting speed or select a better wear resistance grade Reduced vc
	→ Vibration caused by excessive overhang during steel boring bar usage	 → Using carbide boring bar which has better rigidity than steel boring bar and minimizes vibration during deep machining

01) Line-up

← Tool-specific cutting width, depth of cut, and recommended machining forms

		Width	of cut	ting ed	lge (CW	/, mm)					Recon	nmende	ed cutti	ng con	ditions					
	No. of	2 4 6 8						For e	externa	l mach	ining		F	or exte	rnal m	achinir	ıg	Face g	rooving	Promotional
Tools	corners				0 6				1		4	-			F					materials Link
		Max	. Dept	h of cu	t (CDX,	mm)	Grooving	Parting	Turning	Copying	Reliefing	Threading	Grooving	Turning	Copying	Reliefing	Threading	Grooving	Turning	
Saw Man-X	1	2.0				8.0	☆ • Too	★ for ext	ernal di	ameter	cutting	deen h	ole cut	ina						INFO
April 1						60.0			eed and			, doop i		9			T			
Saw Man	1	1.6				9 .0 60.0	☆	*	1 -1:			h		Li						-
						00.0	• 100	tor ext	ernai di	ameter	cutting	, aeep n	ole cut	ung						
Fine Tools	1	0.75	4.6	4.02									*	☆	☆		☆			-
			7.0				• Pre	cision to	ool for ii	nternal	diamete	er cuttin	g I				1			
MSB	1, 2		3.0)									*	☆	☆		☆	☆		INFO
			.5				• Pre	cision to	ool for le	ess thar	n Ø10 ii	nternal	diamete	er cuttin	g					
KGT	1, 2	1.5				8.0	*	ti funct	★	*	☆		★ novetice	*	*	☆	amatar	*	☆	INFO
					36						tion, and		perauo	is such	as exit	erriai ui	ameter,			(3)
MGT	1, 2	1.5				8.0	*	☆	*	*	☆		*	*	*	☆		*	☆	INFO
	,				37						ble of va tion, and		peratio	ns such	as exte	ernal di	ameter,			· (1)
K-Notch	2	0.79			6.35		*	☆	☆	☆			*	☆	☆					INFO
	_		6.35				• Pre	cision c	utting to	ool for e	external	diamet	er and i	nternal	diamet	er				- Tu
Auto Tools (Blade)	2	1.0		4.0			*	☆	☆			☆								INFO
			8	.0			1						automa diamet			ess				<u>:[h.)</u>
Auto Tools (Multi utility)	2	0.5	2.5				*	☆	☆			☆								INFO
	_		8	.3								•	automa ple pur			ingle ho	older			· Sen
ТВ	3	0.5	6.5	4.5				ing too		☆ ernal di	ameter									INFO
Hexa Blade		1.78		4.0			*	☆	☆											INFO
No.	6	1./0	5.0	4.U							machin ve mac		<u> </u>	<u> </u>	l	<u> </u>	1	1		=======================================


02) Grade selection guide


→ Features

			ISO Grade								
Grade		Recommended workpiece	Wear re	sistance			•		Т о	ughness	Features
			5	10	15	20 2	25 3	30 3	5	40 45	
	NC3225	P				P20~25					Steel, mild steel general prupose grade
		P						P30~35			
OVD	NO N	M					M2	25~35			Universal grade
CVD	NC5330 K				K	15~25					Stable in high speed machining
		S			S	15~25					
	NC6315	K		K10~20			Gray cast iron general purpose machining				
	PC3035	P						P30	~40		Exclusive for steel grooving and parting
		P						P30	~40		
	DOCOCO	M				M2	0~30				Universal grade
DVD	PC5300	K				K20~25					Good wear resistance and interrupted cutting
PVD		S			S	15~25					
	PC8110	M			M10~20						Machining heat resistant alloy and
	FUOLIU	S		S5~15							stainless steel at high speed
	PC9030	M					M2	25~35			Medium to roughing for Stainless steel
Carbide	H01	N			N10~20						Non-ferrous metal

→ Application range

Steel

⇔ External diameter parting off

	Recommended tools for external diameter parting off								
Usage	General external diameter parting off	Shallow external diameter parting off	Deep external diameter parting off	Pipe external diameter parting off					
_ 1	Saw Man-X	Auto Tools (Blade)	Saw Man-X	Saw Man-X					

Machining type	Туре	Р	M	K	S	N	
General external		Saw Man-X	Saw Man-X	Saw Man-X	Saw Man-X	Saw Man	
diameter parting off (CUTDIA Ø70 and below)	Main	KSP-N PC5300	KSP-S PC5300	KSP-N PC5300	KSP-S PC8110	SP A30	
		KGT	KGT	KGT	KGT	KGT	
	Sub	KGMN-T PC5300	KGMN-TL PC5300	KGMN-T PC5300	KGMN-TL UPC810	KGGN-A H01	
Shallow external		Auto Tools (Blade)					
diameter parting off (CUTDIA Ø16 and below)	Main	SBCR PC5300	SBCR PC5300	SBCR PC5300	SBCR PC8110	SBCR PC8110	
	Sub	Triangle Blade	Auto Tools (Multi)	Triangle Blade	Auto Tools (Multi)		
		TB-M PC5300	SCR PC9030	TB-M PC5300	SCR PC9030		
Deep external	Main	Saw Man-X	Saw Man-X	Saw Man-X	Saw Man-X	Saw Man	
diameter parting off (CUTDIA Ø70 over Ø120 and below)		KSP-N PC5300	KSP-S PC5300	KSP-N PC5300	KSP-S PC8110	SP A30	
		Saw Man	Saw Man	Saw Man	Saw Man		
	Sub	SP PC5300	SP PC9030	SP PC5300	SP PC8110		
Pipe external		Saw Man-X	Saw Man-X	Saw Man-X	Saw Man-X	Saw Man	
diameter parting off (CUTDIA Ø120 and below)	Main	KSP-N PC5300	KSP-S PC5300	KSP-N PC5300	KSP-S PC8110	SP A30	
*		KGT	KGT	KGT	KGT	KGT	
	Sub	KGMN-T PC5300	KGMN-TL PC5300	KGMN-R PC5300	KGMN-TL UPC810	KGGN-A H01	

^{*}CUTDIA: Workpiece parting diameter maximum

← External diameter Grooving

	Recommended tools for external diameter grooving								
Usage	General external diameter grooving	Shallow external diameter grooving	Deep external diameter grooving	Precision external diameter grooving					
1 1	KGT	Hexa Blade	Saw Man-X	K-Notch					
<u> </u>		*		*					

Machining type	Туре	Р	M	K	S	N	
General external		KGT	KGT	KGT	KGT	KGT	
diameter grooving (CDX 36 mm and below)	Main	KGMN-T PC5300	KGMN-TL PC5300	KGMN-R PC5300	KGMN-TL UPC810	KGGN-A H01	
		KGT	KGT	KGT	KGT	MGT	
- 110	Sub	KGMN-R PC5300	KGMN-T PC5300	KGMN-T PC5300	KGMN-T UPC810	MGGN-A H01	
Shallow external		Hexa Blade	Triangle Blade	Hexa Blade	Auto Tools (Blade)		
diameter grooving (CDX 5 mm and below)	Main	HB-M PC5300	TB-M PC5300	HB-M PC5300	SBGR PC8110		
	Sub	Triangle Blade	Auto Tools (Blade)	Triangle Blade			
		TB-M PC5300	SBGR PC8110	TB-M PC5300			
Deep external	Main	Saw Man-X	Saw Man-X	Saw Man-X	Saw Man-X	Saw Man	
diameter grooving (CDX 36 mm over)		KSP-N PC5300	KSP-S PC5300	KSP-N PC5300	KSP-S PC8110	SP A30	
		Saw Man	Saw Man	Saw Man	Saw Man		
	Sub	SP PC5300	SP PC9030	SP PC5300	SP PC8110		
Precision external		K-Notch	K-Notch	K-Notch	K-Notch	K-Notch	
diameter grooving (CWTOL: ±0.025, Using clamp, CDX 6.5 mm and below)	Main	KNG PC5300	KNGP PC5300	KNG PC5300	KNGP PC8110	KNGP PC8110	
		ТВ	ТВ	ТВ	Blade		
	Sub	TB-M PC5300	TB-M PC5300	TB-M PC5300	SBGR PC8110		

^{*}CWTOL: Cutting width tolerance

← External diameter Turning

← External copying, Relief

Machining type	Туре	Р	M	K	S	N	
General external		KGT	KGT	KGT	KGT	KGT	
diameter machining	g Main	KGMN-T PC5300	KGMN-TL PC5300	KGMN-T PC5300	KGMN-TL UPC810	KGGN-A H01	
-		Hexa Blade	Triangle Blade	Hexa Blade	K-Notch	MGT	
	Sub	HB-M PC5300	TB-M PC5300	HB-M PC5300	KNG PC8110	MGGN-A	
Do ale homain a	_	Auto Tools (Blade)	Auto Tools (Blade)	Auto Tools (Blade)	Auto Tools (Blade)		
Back turning	Main	SBBR PC5300	SBBR PC5300	SBBR PC5300	SBBR PC8110		
			Auto Tools (Multi)		Auto Tools (Multi)		
	Sub		SBR PC9030		SBR PC9030		
Machining type	Туре	Р	M	K	S	N	
General external		KGT	KGT	KGT	KGT	KGT	
diameter machining	g Main	KRMN-C	KRGN-CM	KRMN-C	KRGN-CM	KRGN-A	

Machining type	Туре	Р	M	K	S	N	
General external		KGT	KGT	KGT	KGT	KGT	
diameter machining	Main	KRMN-C PC5300	KRGN-CM PC5300	KRMN-C PC5300	KRGN-CM UPC810	KRGN-A H01	
		MGT	KGT	MGT	KGT	мдт	
	Sub	MRMN-M PC5300	KRMN-C PC5300	MRMN-M PC5300	KRMN-C PC5300	MRGN-A H01	
General external	Main	KGT	KGT	KGT	KGT	KGT	
diameter relief (CDX 3.3 and below)		KRMN-C PC5300	KRGN-CM PC5300	KRMN-C PC5300	KRGN-CM UPC810	KRGN-A H01	
		MGT	KGT	MGT	KGT	MGT	
_	Sub	MRMN-M PC5300	KRMN-C PC5300	MRMN-M PC5300	KRMN-C PC5300	MRGN-A H01	

← Internal grooving and Turning

	Recommended tools for internal grooving and turning								
Usage	General internal grooving, turning	Small internal grooving, turning	Micro internal grooving	Micro internal turning					
	KGT	Fine Tools	MSB	MSB					

Machining type	Туре	Р	M	K	S	N
General internal		KGT	KGT	KGT		
grooving, turning (Dmin Ø20)	Main	KGMI-T PC5300	KGMI-T PC5300	KGMI-T PC5300		
		KGT	KGT	KGT		
	Sub	KGMN-T PC5300	KGMN-T PC5300	KGMN-T PC5300		
Small internal		Fine Tools	Fine Tools	Fine Tools		
grooving, turning (Dmin Ø8, Ø11, Ø14, Ø16)	Main	NFTG PC5300	NFTG PC5300	NFTG PC5300		
Micro internal grooving		MSB	MSB	MSB		
(Dmin Ø3.2, Ø4.2, Ø6.2, Ø8.2, Ø10.2)	Main	MGR PC30M	MGR PC30M	MGR PC30M		
Micro internal turning		MSB	MSB	MSB		
(Dmin Ø3.2~10.2)	Main	MBR PC30M	MBR PC30M	MBR PC30M		

^{*}Dmin: Minimum bore diameter

⇔ Internal copying, Relief

	Recommended tools for internal grooving and turning								
Usage	General internal copying	Small internal copying	Micro internal copying	General internal relief					
	KGT	Fine Tools	MSB	KGT					

Machining type	Туре	P	M	K	S	N	
General internal copying		KGT	KGT	KGT	KGT	KGT	
(Dmin Ø20)	Main	KRMN-C PC5300	KRGN-CM PC5300	KRMN-C PC5300	KRGN-CM UPC810	KRGN-A H01	
		MGT	MGT	MGT	MGT	MGT	
•	Sub	MRMN-M PC5300	MRMN-M PC5300	MRMN-M PC5300	MRMN-M PC8110	MRGN-A H01	
Small internal copying		Fine Tools	Fine Tools	Fine Tools			
(Dmin Ø8, Ø11, Ø14, Ø16)	Main	NFTF PC5300	NFTF PC5300	NFTF PC5300			
Micro internal copying		MSB	MSB	MSB			
(Dmin Ø4.2, Ø6.2)	Main	MBCR PC30M	MBCR PC30M	MBCR PC30M			
General internal relief		KGT	KGT	KGT	KGT	KGT	
(Dmin Ø35)	Main	KRMN-C PC5300	KRGN-CM PC5300	KRMN-C PC5300	KRGN-CM UPC810	KRGN-A H01	

^{*}Dmin: Minimum bore diameter

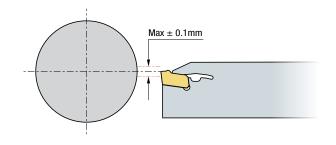
← Face grooving, Turning

→ Thread

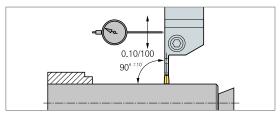
Usage	Recommended tool for face grooving and turning	Usage	Recommended tool for external treading	Usage	Recommended tool for internal treading
Usaye	General face grooving, turning	General external tread		Usaye	General internal tread
	KGT	내경용 60° 외경용	K-Notch		Fine Tools

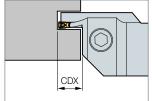
Machining type	Туре	Р	M	K	S	N	
General face		MGT	мст	MGT	MGT	KGT	
grooving, turning	Main	FMM PC5300	FMM PC5300	FMM PC5300	FMM PC8110	KGGN-A H01	
		KGT	KGT	KGT	KGT	MGT	
	Sub	KGMN-T PC5300	KGMN-T PC5300	KGMN-T PC5300	KGMN-T UPC810	MGGN-A H01	

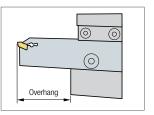
Machining type	Туре	P	M	K	S	N
General external tread		K-Notch	K-Notch	K-Notch	K-Notch	
	Main	KNT PC5300	KNT PC5300	KNT PC5300	KNT PC8110	
		Auto Tools (Blade)	Auto Tools (Multi)	Auto Tools (Blade)	Auto Tools (Multi)	
	Sub	SBTR PC5300	STR PC9030	SBTR PC5300	STR PC9030	
General internal tread		Fine Tools	Fine Tools	Fine Tools		
(Dmin Ø8, Ø11, Ø14, Ø16)	Main	NFTT PC5300	NFTT PC5300	NFTT PC5300		
Micro internal tread		MSB	MSB	MSB		
(Dmin Ø3.3, Ø4.3, Ø6.2)	Main	MTR PC30M	MTR PC30M	MTR PC30M		


^{*}Dmin: Minimum bore diameter

04) Useful cutting tip

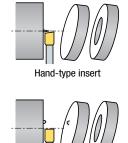

← Insert cutting edge height setting

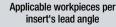

- The insert cutting edge height needs to be set within ± 0.1 mm from the workpiece center.
- It is recommended to machine as close as possible to the chuck in order to reduce vibration



→ Holder setting method

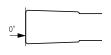
- To minimize and suppress vibration, the position of the insert's cutting edge should be accurately installed to be parallel or perpendicular to the machining axis.
- The shortest CDX holder should be selected based on the machining depth of the workpiece material being machined.
- Overhang should be set as short as possible for optimal usage.

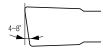




← Recommended lead angles for different workpiece types' parting off

- It is possible to minimize chip (PIP) and burr formation by choosing a proper lead angled insert.
- If there is minimal chip and burr formation, it is recommended to use inserts without a positive lead angle.


Insert without hand


- 4° Hollow (pipe)
- ·6° Pipe and solid bar
- •8° Solid bar
- •15° Solid bar with small diameter

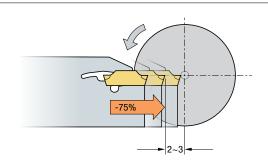
Lead angle 0° (N-type)

- For parting off solid bar shaped workpiece
- Center stub can be occurred after parting off
- Preventing deflection of the parting off direction during machining
- Optimized for deep cutting depth machining

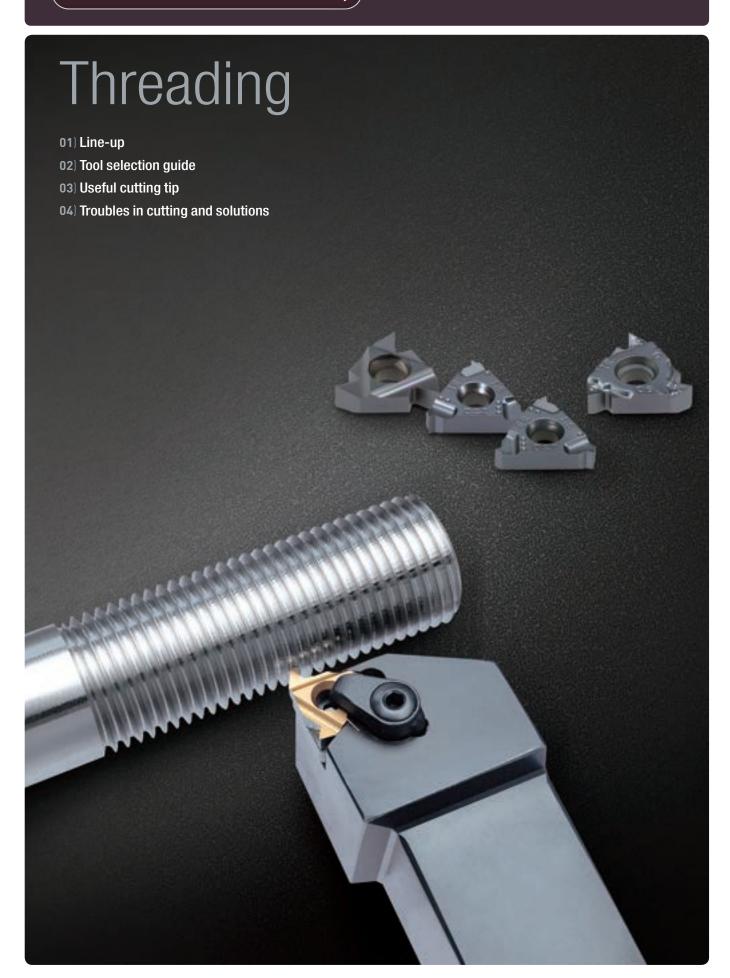
Lead angle 4°~ 8°

- For parting off solid bar shaped workpiece, reducing center
- For machining applications with hollow bar inserts to minimize burr formation

stub


Lead angle 8°~ 15°

- For parting off hollow bars with thin cross-sectional thickness
- For parting off small diameter workpieces and minimizing burr and center stub


→ Reducing feed before parting off the center of workpiece

- Tool breakage can be occurred if the tools approaches the workpiece's center with high feed while parting off
- It is necessary to always reduce feed by 75% at a position 2~3mm ahead of the center.
- Lower feed near the center reduces cutting load and decreases the risk of tool breakage.

05) Troubles in cutting and solutions

			Solu	tions	
Troubles	Factors	Checkpoint 1	Checkpoint 2	Checkpoint 3	Checkpoint 4
Bad surface finish	Chattering and wrong tool setting	Use a short CDX holder	Tool setup at 90°	Use larger Nose R Larger corner R	Change to another chip breaker Refer to the tool selection guide p. 7
Bad chip control	Setting improper cutting condition and chip breaker	Increase the feed within recommended cutting conditions	Machining multiple times with divided cutting depth	Increase coolant amount and pressure (Recommended inner coolant)	Change to another chip breaker Refer to the tool selection guide p. 7
Vibration	Long overhang, wrong setting of holder and lack of holder rigidity	Use a short CDX holder	Check the center height ±0.1mm from the insert's cutting edge	Use smaller nose R Smaller corner R	Use a bigger shank
Short tool life	Selecting improper grade and chip breaker, lower clamping force of holder	Select a proper grade depending on workpiece materials P M K S N	Don't use any damaged holders	Increase coolant amount and pressure (Recommended inner coolant)	Change to another chip breaker Refer to the tool selection guide p. 7
Fracture of insert	Put excessive power when clamping an insert, damaged holder and too long overhang	Use a short CDX holder	Use the provided wrench (prohibited to use a pipe as an extension)	Remove all debris from the clamping part (chips, coolant oil and etc.)	Don't use any damaged holders
Built-up edge	Setting improper cutting condition and chip breaker, lack of coolant	Increase the cutting speed and feed within recommended cutting conditions	Increase coolant amount and pressure (Recommended inner coolant)	Use smaller nose R Smaller corner R	Change to another chip breaker Refer to the tool selection guide p. 7

01) Line-up

→ Grade

	Thread for turning						ead for mi	lling	Solid			
	PVD											
PC30	030T	PC9070T	PC5300 (M class thread)		PC9570T			PC9070M				
Р	K	M	P	M	K	P	M	K	Р	М	K	

U-type

→ Turning line-up

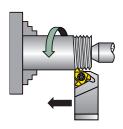
				Grinding	M-type	U-type					Grinding	M-type
Division	Appli- cation	Geometries	Unit				Division	Appli- cation	Geometries	Unit		
Partial	General	55° Intermal	mm	0.5~6.0	0.5~5.0	0.5~3.0	American	Power transfer	29° Intermal	mm	-	-
profile (55°)	threading	External	tpi	48~4	48~5	48~8	ACME (ACME)	(feed screw)	External	tpi	16~4	-
Partial	General	60' Intermal	mm	0.5~6.0	0.5~5.0	0.5~3.0	Stub ACME	Power transfer	29° Internal	mm	-	-
profile (60°)	threading	External	tpi	48~4	48~5	48~8	(STACME)	(thin shape)	External	tpi	16~3	-
ISO	General	1/4P Intermal 60°	mm	0.35~6.0	1.0~3.0	1.5~2.0	UNJ	Aero- space	5/16P Intermal	mm	-	-
metric	industry	1/8P External	tpi	-	-	-		industry	Rmax0,18042P Rmax0,15011P External	tpi	48~4	-
American UN	General	1/4P Intermal 60°	mm	-	-	-	American buttress	One	0.16316P 7° Intermal	mm	-	-
(UN, UNC)	industry	1/8P External	tpi	72~4	-	-	(ABUT)	direction	0.16316P External	tpi	20~6	-
Withworth	Industrial	R0.137P Internal 55°	mm	-	-	-	British buttress	One	0.2754P 7' Intermal	mm	-	-
(BSW, BSF)	pipe	RO.137P External	tpi	72~4	14~11	14~11	(BBUT)	direction	0.2754P - External	tpi	16~8	-
British standard	Gas and water pipe	R0.137P Internal 27.5 27.5	mm	-	-	-	Metric buttress	One direction	0.26384P 3° Intermal	mm	2.0~4.0	-
pipe (BSPT)	(55°)	90 147 R0.137P External	tpi	28~11	-	-	(SAGE)	(DIN513)	0.26384P External	tpi	-	-
National pipe	Gas and water	30° 30° Intermal	mm	-	-	-	API	Oil and gas	30° 30° Internal	mm	-	-
(NPT)	pipe	90" 1°47 External	tpi	27~8	-	-		industry	90 External	tpi	6~4	-
Nationa pipe	Gas and water	30° 30° Intermal	mm	-	-	-	API buttress casing	Oil and gas industry	Internal	mm	-	-
(NPTF) _Dryseal	pipe	90° 1°47° External	tpi	27~8	_	-	(BUT)	(tube, casing)	90° 3° a External	tpi	5	-
Round DIN405	Fire- fighting	R0.22104P Intermal	mm	-	-	-	API round casing	Oil and gas	30' 30' Internal	mm	-	-
(RD)	and food industry	R0.22104P External	tpi	10~4	-	-	(APIRD)	industry	90° °47° External	tpi	10~8	-
Trapez DIN103	Power	30° Internal	mm	1.5~6.0	-	-	Extreme line casing	Oil and gas industry	6* 6 Intermal	mm	-	-
(TR)	transfer	External	tpi	-	-	-	(EL)	(tube, casing)	h a External	tpi	6~5	-

01) Line-up

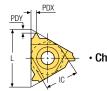
→ Milling line-up

				Indexable	Internal coolant Helical	Internal coolant Helical, drill/chamfer	Deep drilling	External coolant Helical	External coolant straight
Division	Appli- cation	Geometries	Unit						
ISO metric	General industry	1/AP Internal 60'	mm	0.5~6.0	0.5~3.0	1.0~1.75	0.25~2.5	0.5~3.0	0.5~6.0
American UN (UN, UNC)	General industry	1/4P Internal 60'	tpi	32~4	32~8	-	80~1	32~8	-
UNJ	Aerospace industry	5/16P Internal 600 Removi, 15011P Edemal	tpi	24~11	32~13	-	32~13	-	-
Withworth (BSW, BSF)	Industrial pipe	R0.137P Internal	tpi	28~4	26~11	-	-	-	-
British standard pipe (BSPT)	Gas and water pipe (55°)	B0.137P Internal 27.51 27.55 27.55 27.57 F0.137P External	tpi	19~11	28~11	-	-	28~11	28~11
National pipe (NPT)	Gas and water pipe	30' 30' Internal	tpi	18~8	27~8	-	-	27~8	27~8
National pipe (NPTF) _Dryseal	Gas and water pipe	30 30 Internal	tpi	14~8	27~8	-	-	27~8	27~8
BSP (G)	General industry	RO.137P Internal 550 Statement Federal	tpi	-	28~11	-	-	28~11	28~11
MJ	General industry	1/4P intermal	mm	-	-	-	0.5~2.0	-	-

02) Tool selection guide - Thread Turning

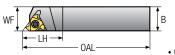

→ Thread turning steps -

Application


- Thread: External right hand ISO metric M40 \times 2.5
- Material: 4140 (25 HRC)

1 Choose the thread turning method

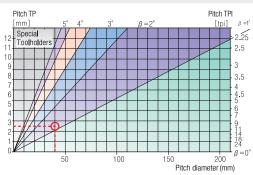
Use a right hand threading insert with a right hand external threading holder as threading direction is towards the chuck.


2 Choose the insert size

• Chosen insert: ER16-2.5 ISO

Insert size	Pitch	Ordering code	Shim	Tool holder	
IC	mm	RH (Right Hand)	RH (Right Hand)	iooi iioidei	
9.525	2.5	ER16-2.5IS0	ATE16	ERH□□-16	

3 Choose the tool holder



• Chosen tool holder: ERH25-16

Insert size	Ordering code	Dimensions (mm)				
IC	RH (Right Hand)	H=HF	В	WF	OAL	LH
9.525	ERH25-16	25	25	25	153.6	30

4 Determine the helix angle

• From the table, using a pitch of 2.5 mm (10 tpi) and a workpiece diameter of $40\,mm$ (1.57"), we find the helix angle to be 1.5°

5 Choose the correct shim

Helix	angle	1.5°
Insert size	IC	9.525
ilisert size	L	16
Shim des	signation	ATE16

7 Determine the number of passes

• Carbide grade chosen: PC3030T • Cutting speed: 140m/min

Pitch	mm	1.50	1.75	2.00	2.50	3.00	3.50	4.00
	tpi	16	14	12	10	8	7	6
No.of	oasses	6~10	7~12	7~12	8~14	9~16	10~18	11~18

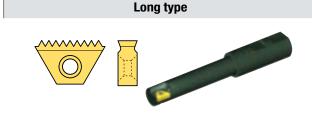
6 Choose the carbide grade and cutting speed

• Carbide grade chosen: PC3030T • Cutting speed: 140m/min

Workpiece			НВ	vc (m/min)	
			пь	PC3030T	
Р	Low alloy steel (alloying elements $\leq 5\%$)	Non-hardened	180	85~145	
		Hardened	275	75~140	
		Hardened	350	70~135	

8 Summary

Thread type	Thread type ISO M40 × 2.5 External right ha	
1. Feed direction	Towards the chuck	
2. Insert and grade	ER16-2.5ISO, PC3030T	
3. Tool holder	ERH25-16	
4. Helix angle	1.5°	
5. Shim	ATE16	
6. Cutting speed	140 m/min	
7. Number of passes	10	

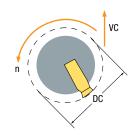

02) Tool selection guide - Thread Milling

Small diameter type

• Tool holder: TMSR • Insert: TM (L = 10.4 mm) • Tool holder : TMSR • Insert : TM2 • For small bore diameters down to 9.5 mm · For standard length threads

- Tool holder: TMSR • Insert : TM2
- · Long shank thread milling

Tapered type


Standard type

- Tool holder : TMSR
 - · Insert: TM2 (BSPT, NPT, NPTF)
- · Taper thread millings

Preparing for the thread milling operation

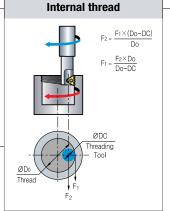
(Calculation of rotational velocity and feed at the cutting edge)-

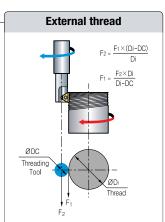
$$n = \frac{vc \times 1000}{\pi \times DC}$$

$$vc = \frac{n \times \pi \times DC}{1000}$$

$$F_1 = n \times z \times f_1$$

- n Rotational Velocity (min-1)
- vc Cutting Speed (m/min)
- DC Tool holder Cutting Dia. (mm)
- F1 Real Feed rate at the Cutting edges(mm/min)
- z No. of Cutting Edges
- fn Feed per Rooth per Rotation (mm/rev)

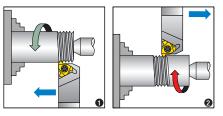

(Calculation of feed rates at the tool center line)-


• Feed rate from the center-line of the tools is required for most of the CNC machine's programming. When dealing with linear tool movement, the feed rate at the cutting edge and the center line are identical, but with a milling tool, this is not the case. The value can be defined relatively by the feed rate at the cutting edge and the feed rate rate at the tool's center-line.

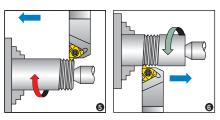
(Grades and applications)

• Grade : PC9570T

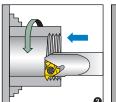
• Application : First Choice for steel and cast iron A tough sub-micron substrate with TiCN coating Provides good fracture toughness and excellent wear resistance

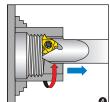


03) Useful cutting tip - Thread Turning

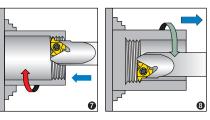

→ Thread turning method

Thread	Inserts & Tool holder	Rotation	Feed direction	Helix method	Drawing no.
Right Hand External	EX RH	Counter clockwise	Towards chuck	Regular	0
	EX LH	Clockwise	Outwards chuck	Reversed	2
Right Hand Internal	EX RH	Counter clockwise	Towards chuck	Regular	3
	IN LH	Clockwise	Outwards chuck	Reversed	4
Left Hand External	EX LH	Clockwise	Towards chuck	Regular	9
	EX RH	Counter clockwise	Outwards chuck	Reversed	6
Left Hand Internal	IN LH	Clockwise	Towards chuck	Regular	0
	IN RH	Counter clockwise	Outwards chuck	Reversed	8

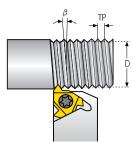

External RH thread



External LH thread



Internal RH thread



Internal LH thread

\hookrightarrow Calculating the helix angle (β)

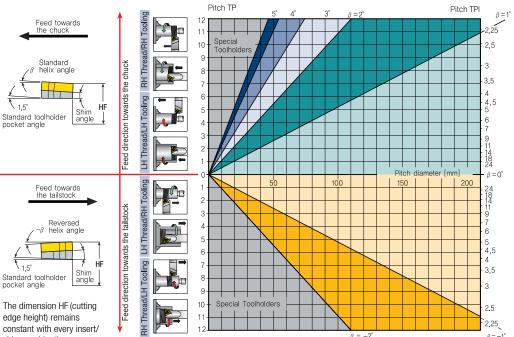
• The helix angle is calculated by the following formula

$$\beta = \tan^{-1} \frac{TP \times N}{\pi \times D}$$

β: Helix angle (°)

P: Pitch (mm)

N: No. of starts

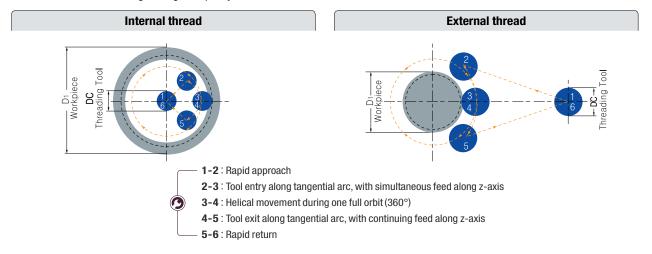

D: Pitch diameter (mm)

 $Lead = TP \times N$

• The helix angle can also be found from the diagram below

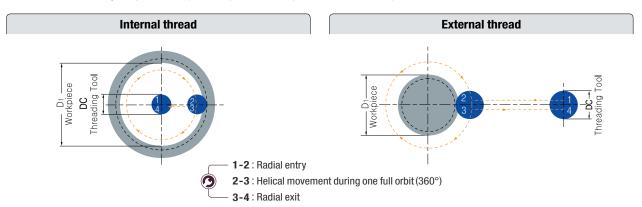
(Helix angle diagram)

constant with every insert/ shim combination

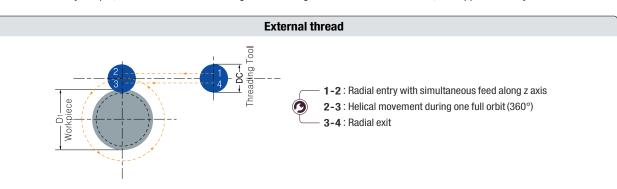


03) Useful cutting tip - Thread Milling

→ Tangential Arc Approach


· With this method, the tool enters and exits the workpiece smoothly. No marks are left on the workpiece and there is no vibration, even with harder materials. Although it requires slightly more complex programming than the radial approach (see below), this is the method recommended for machining the highest quality threads

⇔ Radial Approach


- This is the simplest method. There are two characteristics worth nothing about the radial approach:
 - ① a small vertical mark may be lift at the entry (and exit) point. This is of no significance to the thread itself
 - 2 when using this method with very hard materials, there may be a tendency of the tool to vibrate as it approaches the full cutting depth

Note: Radial feed during entry to the full profile depth should only be 1/3 of the subsequent circular feed

→ Tangential Line Approach

• This method is very simple, and has all of the advantages of the tangential arc method However, it is applicable only with external threads

04) Troubles in cutting and solutions - Thread Turning

Problem		Possible cause	Solution	
		Too high cutting speed	Reduce cutting speed/use coated insert	
	Increased	Too low depth of cut / Too many passes	Increase the depth of cut per pass	
	flank wear	Unsuitable carbide grade	Use a coated carbide grade	
		Insufficient coolant oil	Increase coolant flow rate	
	Uneven cutting	Incorrect helix angle	Choose the correct shim	
	edge wear	Wrong infeed method	Use the alternating flank infeed method	
		Too deep depth of cut	Decrease depth of cut/ increase number of passes	
1	Extreme	Insufficient coolant	Increase coolant flow rate	
	plastic deformation	Too high cutting speed	Reduce cutting speed	
	dolomidation	Unsuitable carbide grade	Use a tougher carbide	
		Too small nose radius	Use an insert with a larger radius, if possible	
		Too deep depth of cut	Decrease depth of cut/ increase number of passes	
	Cutting	Extreme plastic deformation	Use a tougher carbide	
	edge breakage	Insufficient coolant oil	Increase flow rate and/ or correct flow direction	
	Dieakaye	Unsuitable carbide grade	Use a tougher carbide	
		Instability	Check stability of the system	
	Built-up	Incorrect cutting speed	Change the cutting speed	
	edge	Unsuitable carbide grade	Use a coated carbide	
		Tool's height is not matched with the workpiece's axial height	Change tool's height	
	Thread profile is too shallow	Thread's crest is not properly shaped	Recheck the workpiece diameter	
		Worn insert	Change the insert's cutting edge immediately	
		Too low cutting speed	Increase cutting speed	
	Poor surface quality	Wrong shim	Choose correct shim	
ΨΨΨΨΨ		Flank infeed method is not appropriate	Use the alternate flank or radial infeed method	

04) Troubles in cutting and solutions - Thread Milling

Problem	1	Possible cause	Solution
		Too high cutting speed	Reduce cutting speed/use coated insert
	Excessive flank wear	Chip is too thin	Increase feed rate
		Insufficient coolant	Increase coolant flow rate
	Excessive chipping	Chip is too thick	Reduce feed rate/Use the tangential arc method Increase RPM
	спіррпід	Vibration	Check stability
	Built up	Incorrect cutting speed	Change cutting speed
	edge	Unsuitable carbide grade	Use a coated carbide grade
		Feed rate is too high	Reduce the feed.
	Chatter/ vibration	Profile is too deep	Execute two passes, each with increased cutting depth/ Execute two passes, each cutting only half the thread length
Ш.		Thread length is too long	Execute two passes, each cutting only half the thread length
go Nogo	Insufficient thread accuracy	Tool deflection	Reduce feed rate/Execute a "zero" cut

01) Line-up

Machining		Max. ap (mm)	Cutting		Cutting diameter	Product	Holder	Available	Promotional	Sub
types	A.A	5 10 15 20 25 30	-edges	Туре	Range (Ø)	name	designation	inserts	materials Link	application
				Shank	32~63	Rich Mill	RMRS		INFO	
	-	RNMX12:3.5mm	8	Cutter	50 ~ 125	(RMR)	RMRC		-: Jan	-
		SAGX14:5.5mm SNMX14:5.5mm	8		50~250	Rich Mill (RM8-X)	RMX8AC	6	INFO	-
	45°	SNM(E)X12:6mm SNM(E)X15:7.5mm	8		50~400	Rich Mill (RM8)	RM8AC		INFO	-
Facing		ONM(H)X06:4mm ONM(H)X08:5.5mm	16	Cutter	50~400	Rich Mill (RM16)	RM16AC	0	INFO	-
	51°	XNMX06(Flat): 4.8mm XNMX06(Helix): 3.5mm	14		50~160	Rich Mill (RM14)	RM14XC		-	-
£	75°	SNM(E)X12:9mm SNM(E)X15:11mm	8		50 ~ 400	Rich Mill (RM8)	RM8EC		INFO	-
		ADKT10:9.5mm	2	Shank	16~40	Alpha mill-X	AMXS	4	INFO	Facing Slotting
		ADKT12:11.5mm ADKT17:16.5mm	2	Cutter	40~125		AMXC	P	- Jin	Plunge Ramping Helical
		TNKT10:8mm		Shank	25 ~ 40		TPMS		INFO	Facing
		TNKT16:11.5mm TNKT20:15.5mm	3	Cutter	50~125	Triple mill	TPMC		- Jin	Slotting Plunge
	_	XNK(C)T06:5.5mm XNK(C)T08:8mm XNK(C)T12:12mm		Shank Cutter	20~63 40~125	Rich Mill (RM3)	RM3PS RM3PC	Ô	INFO	Facing Slotting Plunge Ramping Helical
Shouldering	90°				14~63		RM4PS			Facing
onouldoring		LNM(E)X10:9mm LNM(E)X15:14mm	4	Shank	40~160	Rich Mill (RM4)	RM4PC		INFO	Slotting Plunge Ramping Helical
		WNGX04:4.3mm WNGX08:8.2mm	6	Shank Cutter	20 ~ 50 40 ~ 125	Rich Mill (RM6)	RM6PS		INFO	Facing Slotting Plunge Ramping
					40~125		TP8PS	•		Helical
		S0KX14:11mm	8	Shank	-	Tangen-Pro (TP8P)			INFO	Facing Slotting Plunge

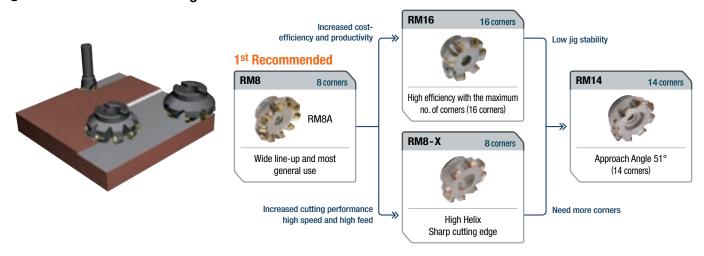
01) Line-up

Machining types	A.A	Max. ap (mm) 5 10 15 20 25 30	Cutting -edges	Туре	Cutting diameter Range (Ø)	Product name	Holder designation	Available inserts	Promotional materials Link	Sub application	
	-	LNMX04:0.5mm LNMX06:1mm	4	Shank	16~42	HFMD	HFMDS		INFO		
		LNMX10:1.5mm		Cutter	32~100		HFMDC				
	13°	LPMT04/LPM(E)W04:0.5mm	2	Shank Cutter	8~21	HFM	HFMS	6	INFO	Facing	
High feed machining	0	WNMX06:1mm WNMX09:1.5mm	6	Shank	16~63	HRMD	HRMDS		INFO	Shouldering Profile Ramping Helical	
	14°	WNMX13:2mm WNMX16:2.5mm		Cutter	40~315		HRMDC		(\lambda_{\mathbb{E}})		
		WDKT08:1mm WDKT10:1mm	3 -	Shank	20~63	HRM	HRMS		-		
	15°	WDKT13:2mm WDKT15:2.5mm		Cutter	50~160		HRMC				
		LXET25:25mm	2	Shank	32~63	Pro-L	PALS	2	_		
		LXET34:34mm		Cutter	63	Mill	PALC	47			
		XEKT19:17mm	2	Shank	20~40	Pro-X	PAXS		INFO		
Aluminum	(6)	XEKT25:23mm		Cutter	40~125	Mill	PAXC		(3)	Facing Slotting Plunge	
cutting		XDET19:17mm	2	Shank	25~40	Pro-V	PAVS		INFO	Ramping Helical	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	Cutter	40~125	Mill	PAVC		=======================================		
		VDKT22 :15mm	2	Shank	12~40	Pro-A			INFO		
		VDKT11:8mm	2	Cutter	40~100	Mill	PAC		-: [jin]		

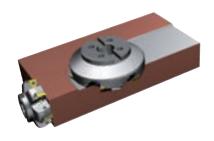
Continuous

02) Grade selection guide

						Applicati	on range		
Machining types	Туре	Product	Machining Features	Р	M	K	S	Н	N
7,			100.00	MM/MF	ML/MM	MF/MM	ML/MM	MM/MF	MA
	For high rigidity flat surface	RM8 RM8-X RM14 RM16 RMR	High speed Continuous Low speed Interrupted	NCM535 PC3700 PC5300 PC5535 PC5400	NC5330 PC5300 PC5535 PC9530 PC5400 PC9540	PC6510 NCM535 PC5300 PC5535 PC5400	PC5300 PC5535 PC5400 PC9540	-	H01
Facing	For high rigidity flat surface	Mill max heavy Power buster	High speed Continuous Low speed Interrupted	NCM535 PC3700 PC5300	PC5300	NCM535 PC5300	PC5300	-	-
	For wiper finishing	RM8 RM16	High speed Continuous Low speed Interrupted	PC3700 PC5300	PC5300	PC6510	PC5300	-	-
	For perpendicularity and flat surface	Alpha mill-X Alpha mill RM3 RM4 Triple mill RM6	High speed Continuous Low speed Interrupted	NCM535 PC3700 PC5300 PC5535 PC5400	NC5330 PC5300 PC5535 PC9530 PC5400 PC9540	PC6510 NCM535 PC5300 PC5535 PC5400	PC5300 PC5535 PC5400 PC9540	PC2505 PC2510	H01 H05
Shouldering	For thin and sagging shouldering	TP2P TP8P RM4 RM6	High speed Continuous Low speed Interrupted	NCM535 PC3700 PC5300 PC5535 PC5400	NC5330 PC5300 PC5535 PC9530 PC5400 PC9540	PC6510 NCM535 PC5300 PC5535 PC5400	PC5300 PC5535 PC5400 PC9540	PC2505 PC2510	H01
	For edge cutting	Mono - Tool Alpha mill Multi - edge	High speed Continuous Low speed Interrupted	NCM535 PC3700 PC5300 PC5535 PC5400	NC5330 PC5300 PC5535 PC9530 PC5400 PC9540	PC6510 NCM535 PC5300 PC5535 PC5400	PC5300 PC5535 PC5400 PC9540	PC2505 PC2510	H01
High feed	High feed machining Aluminum cutting	HRMD HRM HFMD HFM	High speed Continuous Low speed Interrupted	PC3700 PC5300 PC5535 PC5400	PC5300 PC5535 PC9530 PC5400 PC9540	PC5300 PC5535 PC5400	PC5300 PC5535 PC5400 PC9540	PC2505 PC2510	H01
Aluminu		Pro-L Mill Pro-X Mill Pro-V Mill Pro-A Mill	High speed Continuous Low speed Interrupted	-	-	-	-	-	H01 H05


⇔ Chip Breaker selection

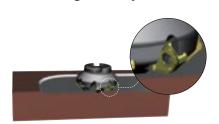
MA	ML	MF	ММ
Aluminum	Hard-to-cut materials	Light cutting	General cutting
Sharp cutting edge type	Low cutting resistance type	Low cutting resistance type	Strengthened edge

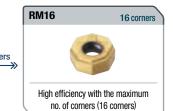

03) Tool selection guide - Facing

← General flat surface milling

Item	Cutting load	Max. Depth of cut	Cutting quality	Versatility	Cost-effectiveness	No. of corners
RM8-X	****	****	****	***	***	***
RM8	***	****	****	****	****	***
RM14	****	***	****	****	****	****
RM16	***	***	***	**	****	****

→ High rigidity flat surface milling




Item	Cutting load	Max. Depth of cut	Cutting quality	Versatility	Cost-effectiveness	No. of corners
Mill max heavy	***	***	****	***	****	***
Power buster	****	****	***	****	****	****

→ Finishing with wiper

Item	Cutting load	Max. Depth of cut	Cutting quality	Versatility	Cost-effectiveness	No. of corners
RM8	***	****	****	****	****	***
RM16	***	****	***	***	****	****

03) Tool selection guide - Facing

⇔ General flat surface milling

 \bigstar 1st recommended $\, \Leftrightarrow 2^{nd}$ recommended $\, \circ \,$ Available

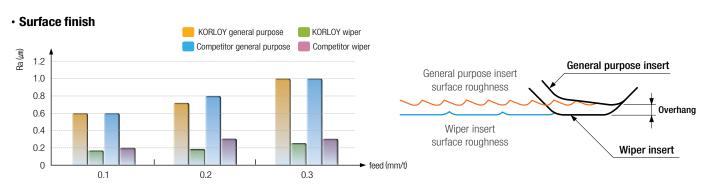
			Ric	ch Mi	II - RN	/18A/I	E/Q					Ric	ch Mi	II - RN	/18A/E	E/Q					Ric	h Mil	I - RN	18-X		
System				*	FIN	7															600	S. C.	The state of the s	1		
A.A				4	5° ~ 8	8°							4	5° ~ 8	8°							4	5°			
Max.ap				6.	0~11	.5							6.	0~11	.5							5	.5			
Diameter(ØD)				5	0 ~ 40	00							8	0 ~ 31	5							50 ~	125			
Material		P	ľ	VI		K]		S	N		P	ı	VI		K]	,	S	N		P	ı	VI		K		S
C/B	MM	MF	MM	ML	MM	MF	MM	ML	MA	MM	MF	MM	ML	MM	MF	MM	ML	MA	MM	ML	MM	ML	MM	ML	MM	ML
PC6510					*	☆								*	☆								*			
PC3700	*	0								*	☆								*							
PC5300	☆	0	0	☆	0	0	0	☆											☆		0	☆	☆	0	0	☆
PC5535	0	0	0		0	0	0																			
PC9530			0																							
PC5400	0	0	0	0	0	0	0	0																		
PC9540			*				*											0	*			0	*			
NC5330	0		0		0		0																			
NCM535	0	0			0	0																				
H01									*																	
H05																										

 \bigstar 1st recommended \Leftrightarrow 2nd recommended \circ Available

	F	Rich Mil	II - RM	14			R	ich Mil	I - RM1	16					F	Rich M	iII - RMI	R		
System	•	S. A.		7																
A.A		5	1º					4:	5°								-			
Мах.ар		3	.0					4.0 ~	~ 5.5							3	.5			
Diameter(ØD)		80 ~	315					80 ~	400				32 ~ 125							
Material		M		K)		P	M		(3	N		P	l	M		(•	S
C/B	N	XNR	N	XNR	MM	MF	MM	MM	MF	MM	ML	MA	MM	ML	MM	ML	MM	ML	MM	ML
PC6510			0	0				*	☆								*	0		
PC3700					*	0							*							
PC5300	0	0	0	0	☆	0	☆	0	0	0	☆		☆	0	0	0	☆	0	0	0
PC5535	0	0	0	0	0	0	0	0	0	0										
PC9530							0													
PC5400	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
PC9540	☆	*				* *									☆	*				
NC5330																				
NCM535	0	0	☆	*	0	0		0	0											
H01												*								
H05																				

03) Tool selection guide - Facing

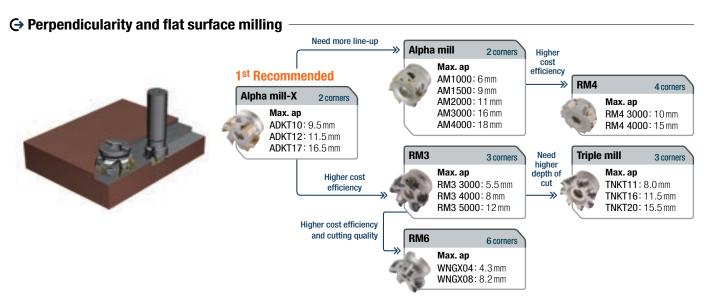
→ High rigidity flat surface milling


 \bigstar 1st recommended \Leftrightarrow 2nd recommended \circ Available

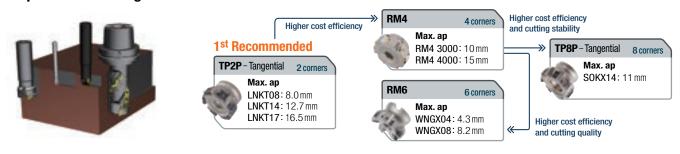
System		Mill Max - Heav	y	Power Br	uster - PBP	Power Bi	uster - PBA	Power B	uster - PBZ		
A.A		55°		9	90°	4	15°	80°			
Max.ap		14.5		2	20		12		18		
Diameter(ØD)		125 ~ 315		80 -	~ 315	80	~ 315	80	~ 315		
Material	Р	M	K	Р	K	Р	K	Р	K		
C/B	MM	MM	MM	NM	NM	NM	NM	NM	NM		
PC3700	*					*		*			
PC5300	☆	*	☆			☆	*	☆	*		
PC9530											
PC5400						0	0	0	0		
NCM535	0	0 0 *				0	☆	0	☆		

→ Finishing with wiper

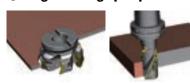
 \bigstar 1st recommended $\, \Leftrightarrow 2^{nd}$ recommended $\, \circ \,$ Available

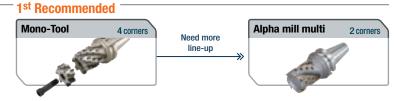

		Rich Mi	II - RM8A		Rich Mill - RM16								
System		1	1				N. Committee						
A.A		4	15°		45°								
Max.ap			6			4.0	~ 5.5						
Diameter(ØD)		50 -	~ 400		80 ~ 400								
Material	Р	M	K	S	Р	M	K	S					
C/B	W	w	W	W	W	W	W	W					
PC6510			*				*						
PC3700	*												
PC9530					0								
PC5300	0	*	0	*	*	*	0	*					

- Insert: ONMX080608-MM (General purpose) / ONHX080608-W (Wiper)
- Grade: PC3700
- Material : SM45C
- Depth of cut : vc = 200 m/min
- Cutting depth: ap = 3.0mm



03) Tool selection guide - Shouldering


Item	Unit price per corner	No. of corners	Versatility	Cutting load	Max. Depth of cut
RM3	****	***	****	***	***
RM4	***	***	***	***	****
RM6	***	***	****	***	***
Alpha mill	**	**	****	***	****
Alpha mill-X	**	**	****	****	****
Triple mill	***	***	**	****	****


→ Perpendicular milling on a thin wall

Item	No. of corners	Cutting stability	Max. Depth of cut	Surface roughness	Line-up
TP8P	****	****	****	**	**
TP2P	**	****	****	****	****
RM4	***	**	****	***	****
RM6	****	***	***	****	****

⊖ Edge cutting- peripheral milling

Item	No. of corners	Cutting stability	Max. Depth of cut	Surface roughness	Line-up
Mono-Tool	****	****	****	****	**
Alpha mill	**	***	****	***	****

03) Tool selection guide - Shouldering

← Perpendicularity and flat surface milling

 \bigstar 1st recommended \Leftrightarrow 2nd recommended \circ Available

				Alpi	ha m	iII-X								Alpha	a mil								Ric	ch Mi	II - R	M3				
System						1								200									1000			1				
A.A					90°									9	O°									9	O°					
Max.ap	P M K S N P M K S H N P																	5.5 ~	12.0)										
Diameter(ØD)				10	6 ~ 12	25								10~	200															
Material		P	N	Л		K		S	N		P		И		(S	Н	N		5.5 ~ 12.0 20 ~ 125							N		
C/B	ММ	ML	ММ	ML	ММ	ML	ММ	ML	MA	ММ	MF	ММ	ML	ММ	MF	ММ	ML	ММ	MA	P M K S H						MA				
PC6510					*	☆								*	☆									*	☆					
PC2505																		0										0		
PC2510																		*										*		
PC3700	*	0								*	0									*	0									
PC5300	0	0	0	0	0	0	0	0		0	0	0	☆	0	0	0	☆			0	0	0	0	0	0	0	0			
PC5535	☆	0	0	☆	0	0	0	☆		☆	0	0		0	0	0				☆	0	0	☆	0	0	0	☆			
PC9530												0																		
PC5400	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0			
PC9540			0	*			0	*				*				*						0	*			0	*			
NC5330										0	0	0		0	0	0														
NCM535	0	0			0	0				0				0						0	0			0	0					
H01																			*										*	
H05																														

★ 1st recommended ☆ 2nd recommended ○ Available

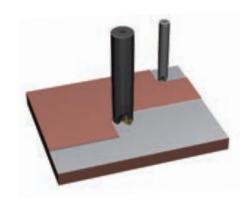
				Rich	Mill -	RM4							Triple	mill							Rich	Mill -	RM6				
System					1	The same of the sa						-	5								0	(TH					
A.A					90°								9	O°								90°					
Max.ap				10	.0 ~ 1	5.0							8.0 ~	15.5								18.0					
Diameter(ØD)				1	4 ~ 16	60							25 ~	125					25 ~ 125								
Material		P	I	VI		K		S	N			I	/ I		K		S		25~125 P M K S N								
C/B	MM	MF	MM	MF	ММ	MF	MM	MF	MA	ММ	ML	ММ	ML	MM	ML	ММ	ML	MM	ML	ММ	ML	ММ	ML	ММ	ML	MA	
PC6510					*	☆								*								*	☆				
PC2505																											
PC2510																											
PC3700	*	0								*	0							*	0								
PC5300	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
PC5535	☆	0	*	☆	0	0	*	☆		☆	0	0	☆	☆	0	0	☆	☆	0	0	☆	0	0	0	☆		
PC9530			0																								
PC5400	0	0	0	0	0	0	0	0										0	0	0	0	0	0	0	0		
PC9540													*				*			0	*			0	*		
NC5330																											
NCM535	0		0		0		0											0	0			0	0				
H01									*																	*	
H05																											

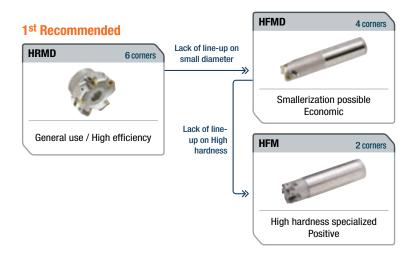
03) Tool selection guide - Shouldering

⊖ Perpendicular milling on a thin wall

 \bigstar 1st recommended \Leftrightarrow 2nd recommended \circ Available

			Ta	ange	entia	I TP:	2P			Tangen	tial TP8P			F	Rich	Mill	- RM	4					F	Rich	Mill	- RM	16		
System			(1			•																	P	TOW !	35.			
A.A					90°					90° 90° 12.0 10.0 ~ 15.0													90°						
Max.ap				8.0	0 ~ 1	6.5				12.0 10.0 ~ 15.0 32 ~ 125 14 ~ 160											18.0)							
Diameter(ØD)				10	6 ~ 1	25				12.0 10.0 ~ 15.0 32 ~ 125 14 ~ 160										2	5 ~ 1	25							
Material		P	ı	VI		K		S	N	32~125 14~160							N		P	I	VI		K		S	N			
C/B	ММ	ML	ММ	ML	ММ	ML	ММ	ML	MA	ML	ML	ММ	MF	ММ	MF	ММ	MF	MM	MF	MA	ММ	ML	ММ	ML	ММ	ML	ММ	ML	MA
PC6510						*										*	☆								*	☆			
PC3700												*	0								*	0							
PC5300	*	☆	0	*	0	☆	☆	*		*	*	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	
PC5535												☆	0	*	☆	0	0	*	☆		☆	0	0	☆	0	0	☆	*	
PC9530														0															
PC5400	0	0	0	☆	0	0	0	0				0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
PC9540																							0	*					
NC5330																													
NCM535												0				0					0	0		0	0				
H01																				*									*
H05																													


⇔ Edge cutting- peripheral milling

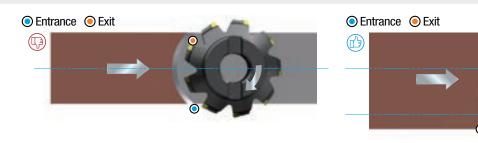

 \bigstar 1st recommended \Leftrightarrow 2nd recommended \circ Available

	Mono	90° 94 ~ 114 50 ~ 80 BT P K MM MM MM				Alı	pha mill	multi - e	edge			
System						1	197	No.				
A.A	9	0°					9	0°				
Max.ap	94 ~	114					15	~ 76				
Diameter(ØD)	50	~ 80					16 ~	- 100				
Arbor	Е	ST .					BT, S	K, HSK				
Material	P	K		P		M		K		S	Н	N
C/B	ММ	MM	MM	MF	MM	ML	MM	MF	MM	ML	MM	MA
PC6510							*	☆				
PC2505											☆	
PC2510											*	
PC3700	*		*	0								
PC5300	☆	*	☆	0	0	☆	0	0	0	☆		
PC5535			0	0	0	0	0	0	0	0		
PC9530												
PC5400			0	0	0	0	0	0	0	0		
PC9540					0	*			0	*		
NC5330			0	0	0	0	0	0	0	0		
NCM535			0	0			0	0				
H01												*
H05												

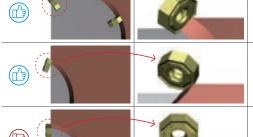
03) Tool selection guide - High feed machining

⇔ High feed milling

Item	Cost-effectiveness	Cutting resistance	Max. Depth of cut	No. of corners	Min. Cutting dia
HFMD	****	****	****	****	****
HFM	**	****	**	**	****
HRMD	****	***	****	****	***
HRM	***	***	****	***	**


 \star 1st recommended $\, \stackrel{\cdot}{\Rightarrow} \, 2^{nd}$ recommended $\, ^{\circ}$ Available

			HRN	1					Н	IRM	D								HFM	1								Н	IFM	D				
System				r.					1	1							¥								- 0.4~1.5 8~100 P M K S H									
A.A			15º							14º									13º						- 0.4~1.5									
Max.ap		1.	0 ~ 2	2.5					1.	0 ~ 2	2.5							0.	4 ~ 0).5														
Diameter(ØD)		20) ~ 1	60					16	5 ~ 3	15							8	3~2	1					8~100									
Material	P	M	K	S	Н		P	- I	VI		(S	Н		P		VI		K		S	Н		P		М			K		S	H	1
C/B	МН	МН	МН	МН	МН	ММ	MF	ММ	ML	ММ	MF	ММ	ML	MM	MF	-	MF	-	MF	-	MF	-	-	ММ	MF	ММ	MF	ML	ММ	MF	ММ	ML	ММ	MF
PC6510			*																															
PC2505					☆									☆									☆											
PC2510					*									*									*											
PC3700	*				0	*	0								*									*	0								*	☆
PC5300	☆	☆	☆	☆	0	☆	0	0	☆	*	0	0	☆		☆	0	*	☆	*	☆	☆	*	0	☆	0	0	0	☆	*	0	☆	*		
PC5535						0	0	0		☆	0	0												0	0	0	0	0	☆	0	0	0		
PC5400	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0		0		0			0	0	0	0	0	0	0	0	0		
PC9530		*		*				0	0																									
PC9540								0	*			0	*													0	0	*						

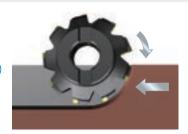


04) Useful cutting Tip

• Cutter position: Do not align the cutter center with the center of the workpiece!

Optimal ae Selection: Maximize tool life by selecting the optimal ae!

ae > 75% of ØD


- · Optimal cutting conditions
- · Offset the initial impact along the direction of rotation when entering the cut

ae < 25% of ØD

- · Form positively when entering.
- · Absorb the impact during entry by the outermost part of the insert, gradually offset by the tool

ae = 50% of \emptyset D

- · Not recommended.
- · Very high impact and load on the tool during a tool's entering
- Downward milling: Reduce heat and minimize work hardening tendencies!

Optimal no. of tooth determination: Select the appropriate No. of tooth based on the application!

No sign (Coarse)

- · Minimal no. of inserts · Limited stability
- · Long overhang
- · Small machine/ limited power
- · Deep pocket slot machining
- · Uneven pitch

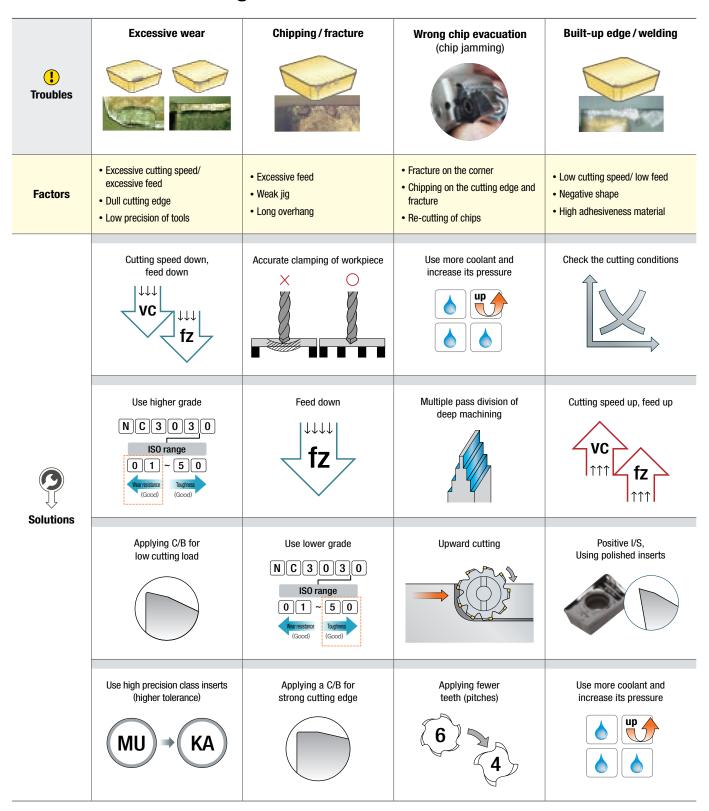
M (Close)

- General use
- · Proper for multi-variety production
- · Small to medium machine
- · 1st recommended in general

Optimal feed rate determination: Chip thickness varies upon the tool's approach angle so maximum feed rate also varies.

15°	45°	95°
	-1111	100
tz tgg	To the state of th	fz=hex
$5.76 \times f_z$	$1.414 \times f_z$	fz

→ Main formula


$$h_{ex} = f_z * \cos(AA)$$
$$f_z = \frac{h_{ex}}{\cos(AA)}$$

- · Maximal no. of inserts to maximize productivity
 - · Stable cutting conditions
 - · Short chip material

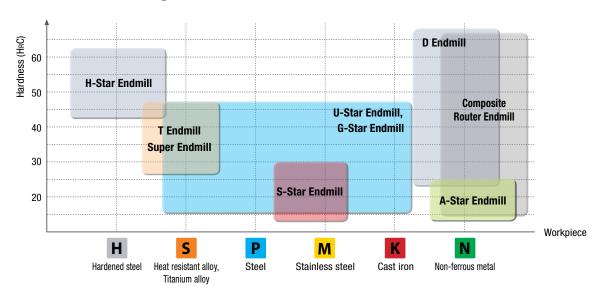
H (Extra Close)

· Heat-resistant alloy material

05) Troubles in cutting and solutions

Endmill 01) Line-up

- 02) Tool selection guide
- 03) Useful cutting tip
- **04**) Troubles in cutting and solutions


Q

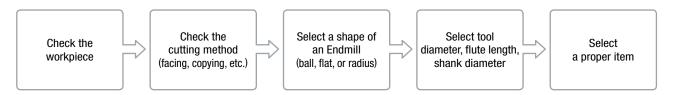
01) Line-up

Workpiece	Use	Product	Туре	No. of	Diameter	Picture	Features	Promotional materials
Horkpiooo		name	.,,,,	tooth	(mm)	No. of standard items	1 501,0155	Link
н	High hardness (~H _R C65)	cBN Endmill	B	2	0.4~2	33 Items	Higher productivity and surface finish in high speed cutting Stable tool life and surface from high precision Endmill	INFO
n	High hardness (~HrC63)	H-Star Endmill	F B R	2~6	0.1~20	3,007 Items	Economical tools for high speed and high hardness machining Available for various shapes of workpiece as long-neck	INFO
	Hardness (~H _R C50)	U-Star Endmill	F B R	2~6	0.1~25	4,585 Items	Economical tools for general machining with high performance For various workpiece machining (carbon steel, alloy steel, cast iron, pre-hardened, etc.)	INFO
PK	General (~HrC30)	G-Star Endmill	F B R	2~4	1.0~20	456 Items	For general machining with high performance and high quality For various workpiece machining (carbon steel, alloy steel, cast iron, pre-hardened, etc.)	INFO
M	Stainless steel	S-Star Endmill	F B R	2~7	1.0~20	187 Items	Optimal performance in stainless machining Enhanced oxidation resistance	INFO
	HRSA	Super Endmill for HRSA	F	4	3.0~20	162 Items	Endmill for HRSA machining Optimal for machining of Ni based HRSA such as Inconel, Hastelloy, Waspaloy, etc.	INFO
S	Titanium	Super Endmill for Ti	F B R	2/4	1.0~20	64 Items	Optimal edge design for stainless steel machining ensures stable machining by minimizing a sudden breakage New coating with better oxidation resistance and higher surface hardness is applied and shows better performance on stainless steel series, titanium, Ni based and etc.	INFO
	Non-ferrous metal, Aluminum	A-Star Endmill	F B Ros	2~3	1.0~20	330 Items	Effective chip evacuation in high feed machining with U-shape Double relief angle (Stronger cutting edge hardness)	INFO
	Non-ferrous metal, Aluminum	SSEA	F	2~3	1.0~20	128 Items	Good welding resistance and chip evacuation Minimized cutting load and built-up-edge and good surface finish	INFO
N	Composite materials	Composite Router Endmill	F	2~8	4.0~12	44 Items	Router for composite material machining High performance due to Nano-Crystalline dia-coating	INFO
	Graphite, Ceramics	D Endmill	F B R	2~4	0.5~12	280 Items	Longer tool life due to high hardness dia-coating Applying one-pass grinding and good surface finish	INFO
	Dental, metal, wax, Zirconia	T Endmill	F	2	0.3~7.5	214 Items	Endmill for machining materials for stooping teeth, Zirconia, Titanium, Co-Cr, Wax, PMMA, etc. Applicable to dental milling machine and various materials for stooping teeth	INFO
For general machining with special function	Roughing	R ⁺ Endmill	₹ Ro Ş	2~4	5.0~25	204 Items	Endmill with a shape minimizing cutting load for roughing	INFO

02) Tool selection guide

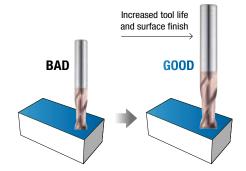
\hookrightarrow Tool selection guideline by functions

 \bigstar 1st recommended $\, \, \Leftrightarrow 2^{nd}$ recommended


Туре	No. (of tooth							
			Precise finishing	Finishing	Roughing	Slotting	Plunging	Copying	Trochoidal milling
	2 teeth	2			☆	*	*		
Flat/	3 teeth	3		☆	☆	*	☆		
Radius	4 teeth	4	*	*	*	*			*
	6 teeth or over	6	*	*					*
	2 teeth	2				*		*	
Ball	4 teeth	4				☆		*	

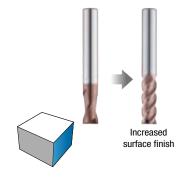
 $[\]ensuremath{\mathbb{X}}$ It is recommended to choose the shortest length tool in every application as possible.

Q

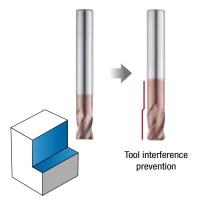

03) Useful cutting tip

→ How to select an Endmill

⇔ How to use an Endmill


1) Using a larger diameter in case of no issues during machining

2) Use the shortest available flute length


3) Use a tool with more flutes as possible for finishing

4) Maintain a short end mill overhang from arbor

5) Use a necked tool for deep machining depths

* In case you already have existing tools in use

Please install the KORLOY KTS app from Play Store or App store and utilize the Solid Tool Converter to select recommended tools. [App Store Link]

04) Troubles in cutting and solutions

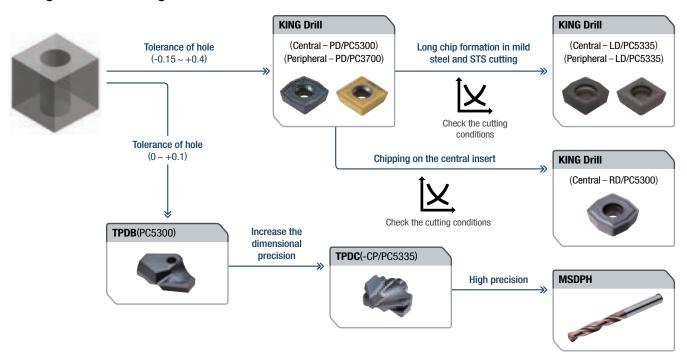
Troubles	Chipping on the tool	Excessive wear on the tool	Bad surface finish	Defective dimensional accuracy, perpendicularity	Fracture in while cutting
Factors	High speed/high feed Long flute length, overhang	High speed/high feed Long overhang	Vibration Built-up edge	Improper cutting conditions Long flute length, overhang	Improper cutting conditions Long overhang
	Cutting speed down, feed down	Cutting speed down, feed down	Cutting speed up, feed down	Cutting speed up, feed down	Cutting speed down, feed down
	Use a tool with short flute length	Check the item (shape and grade)	Select short overhang	Use a tool with short flute length	Enlarge the space for chip flowing (Decrease the no. of tooth)
Solutions	Select short overhang	Increase the no. of effective tooth	Use a tool with short flute length	Increase the no. of effective tooth	Select short overhang
	Check the item (shape and grade)	Select short overhang	Check the clamping of the facility, arbor and workpiece	Select short overhang	Check the item (shape and grade)

01) Line-up

(vc:m/min, fn:mm/rev)

ISO Work-	Machining	Tolerance	Drills dia.	Product	Depth of	hol	ders		Inserts	Grade	Recom	mended condition	Promotional materials
piece	types	of hole	Di ilis ula.	Troudet	cut	Picture	Designation	Picture	Designation	selection	VC	fn	Link
	Through-hole	-0.15 +0.4	Ø12~Ø60.5 Ø61~Ø100 (Cartridge type)	KING Drill	2D, 3D 4D, 5D		K□D	(External)	SPMT□-PD XOMT□-PD SPMT□-LD XOMT□-PD (For mild steel)	PC3700 PC5335 PC5335 PC5300	70 180	0.18 ~ 0.04	INFO
	Through-hole	0.0 +0.1	Ø8.0 Ø11.9	TPDX	3D, 5D, 8D		TPDX□D		TPD□XP	PC325U	50 140	0.35 0.12	INFO
	Through-hole	0.0 +0.1	Ø10.0 Ø32.9	TPDB Plus 1st (recommended)	3D, 5D, 8D 10D, 12D		TPDB□-P	&	TPD□B	PC5300	60 110	0.4 0.15	INFO
	Through-hole	0.0 +0.1	Ø12.0 Ø30.9	TPDC Plus 2nd (recommended)	1.5D 3D, 5D, 8D 10D, 12D		TPDC□D		TPD□CP	PC5335	40 120	0.48 0.1	INFO
	Flat / Blind hole	0.0 +0.1	Ø12.0 Ø30.9	TPDC Plus 1st (recommended)	1.5D 3D, 5D, 8D 10D, 12D		TPDC□D	46	TPD□CP-FC	PC5335	70 90	0.33 0.18	INFO
P	Flat / Blind hole	0.0 +0.1	Ø14.0 Ø30.9	TPDB Plus 2nd (recommended)	1.5D	W. Carlotte	TPDB□-F	4	TPD□B-F	PC5400	60 80	0.32 0.2	INFO
	H-Beam, Plate	0.0 +0.3	Ø14.0 Ø30.9	TPDB-H	3D, 4D, 8D	4	TPDB□-H		TPD□B-H	PC340Q	60 75	0.3 0.15	INFO
	Through-hole	0.0 +0.1 (Highly precise)	Ø2.5	MSD Plus	3D, 5D, 7D (Internal coolant)		MSDPH-□P	-	-	PC325U	50 120	0.4 0.08	INFO
	Through-hole	0.0 +0.1 (Highly precise)	Ø1.0 Ø20.0	W-Star Drilll 1st (recommended)	5D, 7D (External coolant)		NDPG50□	-	-	PC325W	40 120	0.32 0.06	INFO
	Through-hole	0.0 +0.1 (Highly precise)	Ø1.0 Ø20.0	ESD Plus 2 nd (recommended)	3D, 5D, 7D (External coolant)		ESDP-□	-	-	PC325U	40 120	0.32 0.06	INFO
	Through-hole	0.0 +0.1 (Highly precise)	Ø3.0 Ø10.0	MLD Plus	10D ~ 25D (External coolant, MQL)		MLD□N-□	-	-	PC315G	60 90	0.25 0.08	INFO
	Flat / Blind hole	0.0 +0.1 (Highly precise)	Ø2.5 Ø16.0	MSFD	2D (External coolant) 3D (Internal coolant)		MSFD(H)□	-	-	PC325U	50 90	0.20 0.03	INFO
	Through-hole	-0.15 +0.4	Ø12~Ø60.5 Ø61~Ø100 (Cartridge type)	KING Drill 1st (recommended)	2D, 3D 4D, 5D		K□D	(External) (Internal)	SPMT□-LD XOMT□-LD (For carbon steel)	PC5335 PC5335	80 140	0.08 0.04	INFO
		-0.15	Ø12~Ø60.5	KING Drill	2D, 3D			(External)	SPMT□-PD	PC9540	60	0.08	INFO
M	Through-hole	+0.4	Ø61~Ø100 (Cartridge type)	2nd (recommended)	4D, 5D	•	K□D	(Internal)	XOMT□-PD	PC9540	120	0.04	- The
	Through-hole	0.0 +0.1	Ø12.0 Ø30.9	TPDC Plus	1.5D 3D, 5D, 8D 10D, 12D		TPDC□D		TPD□CM	PC330N	50 90	0.35 0.05	INFO

01) Line-up

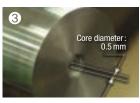

(vc:m/min, fn:mm/rev)

		1	I	1	I					1			n, fn :mm/rev			
ISO Work-	Machining	Tolerance	Drills dia.	Product	Depth of	ho	lders		Inserts	Grade	Recom cutting (mended condition	Promotional materials			
piece	types	of hole	Dinio did.	Troudot	cut	Picture	Designation	Picture	Designation	selection	VC	fn	Link			
M	Through-hole	0.0 +0.1 (Highly precise)	Ø2.5 Ø20.0	MSD Plus	3D, 5D, 7D (Internal coolant)		MSDPH-□M	-	-	PC325U	25 80	0.3 0.05	INFO			
	Through-hole	0.0 +0.1 (Highly precise)	Ø1.0 Ø20.0	W-Star Drill	5D, 7D (External coolant)		NDPG50□	-	-	PC325U	20 64	0.24 0.04	INFO			
P M	Through-hole	0.0 +0.1 (Highly precise)	Ø3.0 Ø20.0	P-Star	3D, 5D, 8D		(H)P(I)50□	-	-	-	40 120	-	INFO			
K	Through-hole	0.0 +0.1 (Highly precise)	Ø1.0 Ø20.0	W-Star Drill	5D, 7D	A STATE OF THE STA	NDPG50□	-	-	-	40 120	-	INFO			
	(-0.15	Ø12~Ø60.5		2D, 3D		,	(External)	SPMT□-PD	PC6510	100	0.26	INFO			
	Through-hole	+0.4	Ø61 ~Ø100 (Cartridge type)	KING Drill	4D, 5D		K□D	(Internal)	XOMT□-PD	PC5300	250	0.04	-: [16]			
	Through-hole	0.0 +0.1	Ø10.0 Ø32.9	TPDB Plus 1st (recommended)	3D, 5D, 8D 10D, 12D		TPDB□-P	&	TPD□B	PC5300	70 1~40	0.45 0.18	INFO			
K	Through-hole	0.0 +0.1	Ø12.0 Ø30.9	TPDC Plus 2nd (recommended)	1.5D 3D, 5D, 8D 10D, 12D		TPDC□D		TPD□CP	PC5300	70 140	0.55 0.2	INFO			
	Through-hole	0.0 +0.1 (Highly precise)	Ø2.5 Ø20.0	MSD Plus	3D, 5D, 7D (Internal coolant)	1	MSDPH-□K	-	-	PC325U	70 150	0.4 0.1	INFO			
	Through-hole	0.0 +0.1 (Highly precise)	Ø1.0 Ø20.0	W-Star Drill	5D, 7D (External coolant)	-	NDPG50□	-	-	PC325W	56 120	0.32 ~ 0.08	INFO			
		-0.15	Ø12~Ø60.5		2D, 3D			(External)	SPMT□-ND	H01	200 0.25	INFO				
	Through-hole	+0.4	Ø61 ~Ø100 (Cartridge type)	KING Drill	4D, 5D		K□D	(Internal)	XOMT□-ND	H01	400	0.05	-; Ju			
	Through-hole	0.0 +0.1	Ø12.0 Ø30.9	TPDC Plus	1.5D 3D, 5D, 8D 10D, 12D		TPDC□D		TPD□CN	H01	70 220	0.55 ~ 0.28	INFO			
N	Through-hole	0.0 +0.1 (Highly precise)	Ø1.0 Ø13.0	SSD-N	-	A STATE OF THE STA	SSD N	-	-	H01	65 120	0.18 0.03	INFO			
	Through-hole	0.0 +0.1 (Highly precise)	Ø2.5 Ø20.0	MSD Plus	3D, 5D, 7D (Internal coolant)	1	MSDPH-□N	-	-	FG2	40 150	0.4 0.05	INFO			
		-0.15	Ø12~Ø60.5		2D, 3D					1	(External)	sPMT□-PD	PC5300	30	0.16	INFO
	Through-hole	+0.4	Ø61 ~Ø100 (Cartridge type)	KING Drill	4D, 5D		K□D	(Internal)	XOMT□-PD	PC5300	100	0.04	-: (Jan)			
S	Through-hole	0.0 +0.1 (Highly precise)	Ø2.5 ~ 0 Ø20.0	MSD Plus	3D, 5D (Internal coolant)	1	MSDPH-□S	-	-	PC325T	20 50	0.23 0.045	INFO			

02) Tool selection guide

→ Through-hole machining

Application products


Machining convex side	Machining concave side	Boring	Ramping	Machining cross holes	Machining overlapped holes
				10	0
KING Drill	KING Drill	KING Drill	KING Drill	KING Drill	KING Drill
TPDB Plus	TPDB Plus	-	TPDB - F	TPDB Plus	TPDB-F
TPDC Plus	TPDC Plus	-	TPDC - FC	TPDC Plus	TPDC - FC
MSDPH	MSDPH	-	MSFD	MSDPH	MSFD
W-Star Drill	W-Star Drill	-	W-Star Drill	W-Star Drill	-
ESD Plus	ESD Plus	-	ESD Plus	ESD Plus	-

03) Useful cutting tip

→ Notice for setting the drill in the lathe

- Set the peripheral insert parallel to the X axis (based on the side lock)
- · If the machined core is about 0.5 mm after machining 5 mm, that is the proper setting
- ** Please make sure that the location of the side lock could be different depending on manufacturers of machine

Notice for setting the top solid indexable drill

Use the shortest drill as possible after considering machining depth

-{ Setting of the horizontal equipment }-

-{ Setting of the vertical equipment }

→ How to drill a deep hole (10D/12D)

• Using a pilot drill (Recommended)

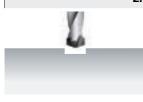
1. Drilling a pilot hole (with a pilot drill)

 Drill a 0.5D pilot hole in 70% lower cutting speed with 1.5D drill or 3D drill

Start drilling in recommended

2. Start drilling

Il or 3D drill


Without pilot drill

1. Drilling a pilot hole (without a pilot drill)

 After drill 0.5D with 70% lower cutting speed, stop drilling for 2-3 seconds putting the drill in the hole

2. Stop drilling

 Stop supplying the coolant and completely take out the drill from the hole. Then, stop drilling for 2-3 seconds

cutting conditions after replacing

3. Ready to drill

 After putting the drill in the hole to 2-3 mm upper than the bottom of the pilot hole, start supplying the coolant. Then, be ready to start drilling

4. Stop drilling

Start drilling in recommended cutting conditions

⇔ Cautions when drilling

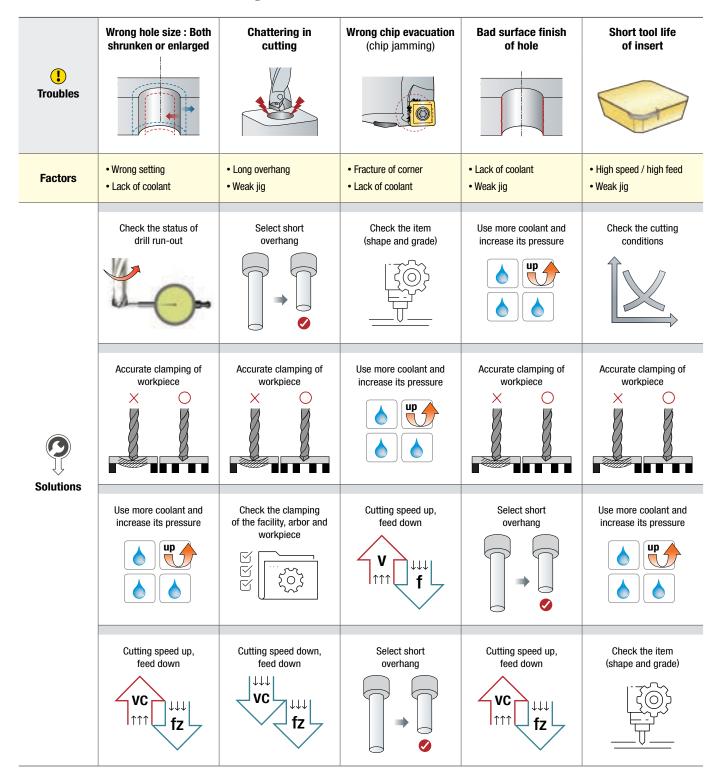
· Supply enough coolant to the beginning of the hole

· Minimum pressure of oil coolant: 5 bar

· Minimum flow of coolant: 1.321 gal/min

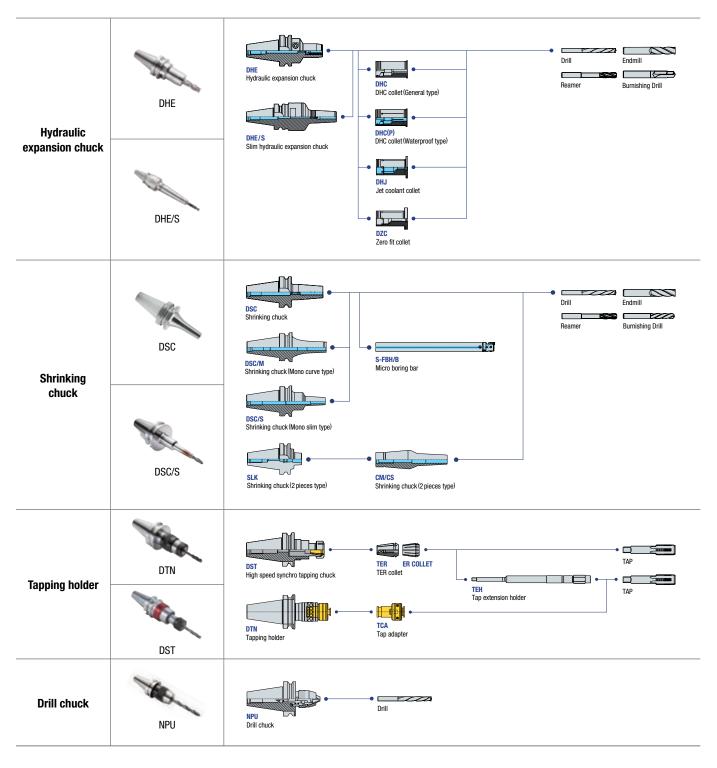
[Internal coolant]

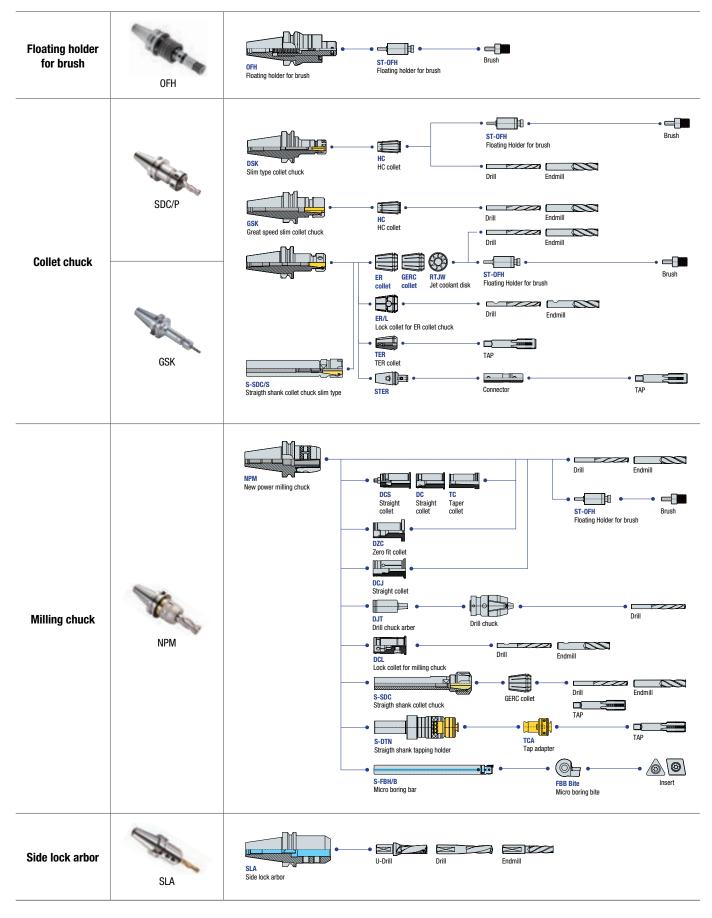
[External coolant]



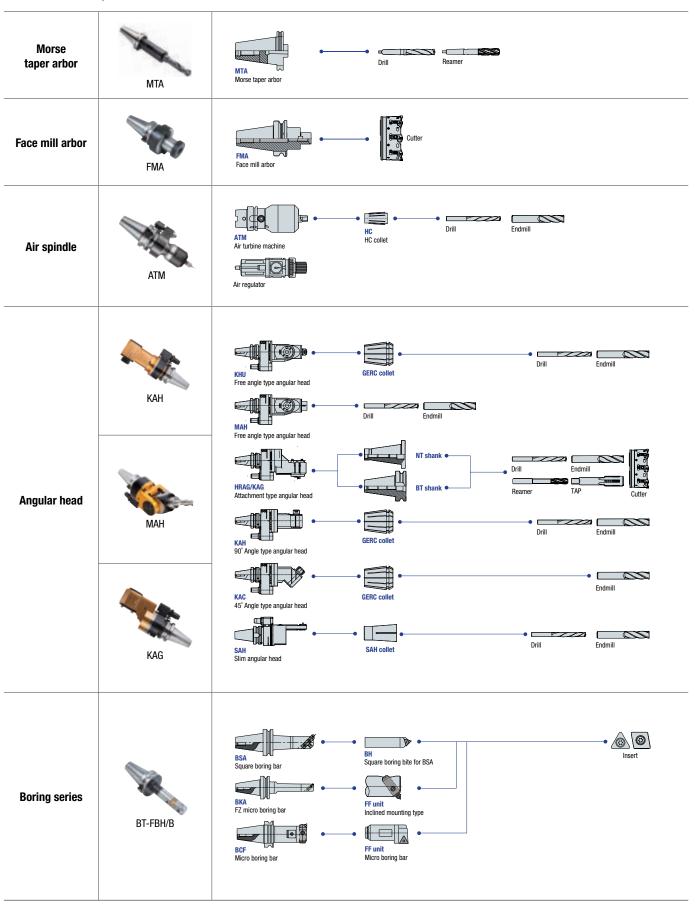
[Non-dry processing]

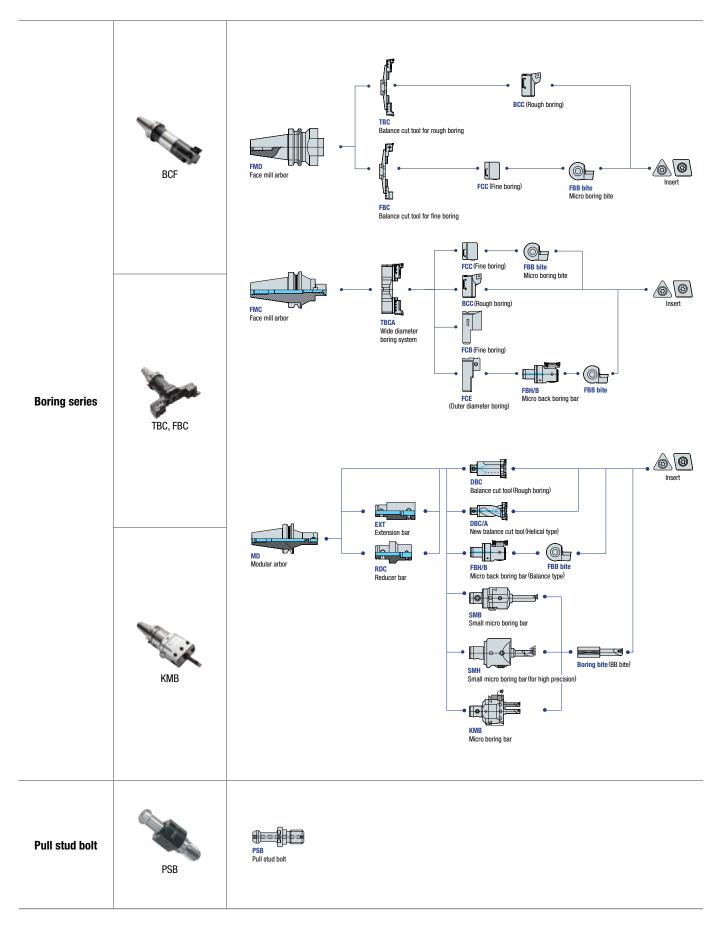
04) Troubles in cutting and solutions



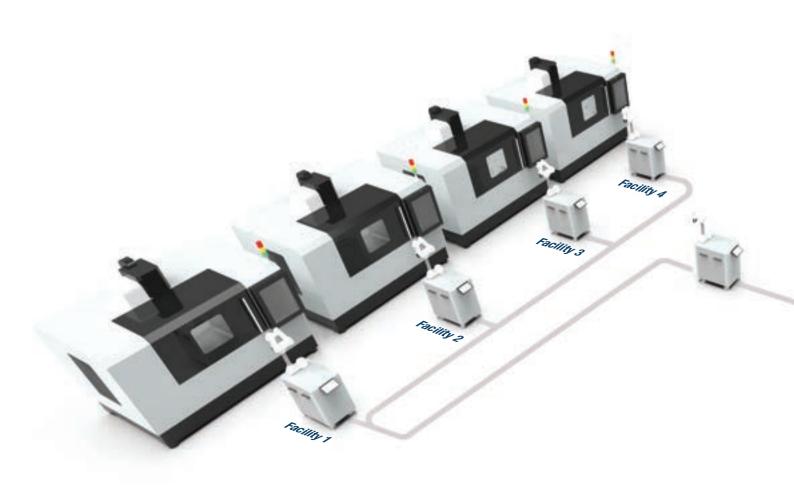

Tooling systems

DINOX map


Division	Milling chuck	Hydraulic expansion chuck	Shrinking chuck
Use	Low to medium speed machining/ general machining	High speed finishing/ precision machining	High speed finishing for narrow and deep shape
Maintaining clamping force	***	**	***
Precision	**	***	***
High speed machining	*	***	***
Easy to use	***	***	**



DINOX map



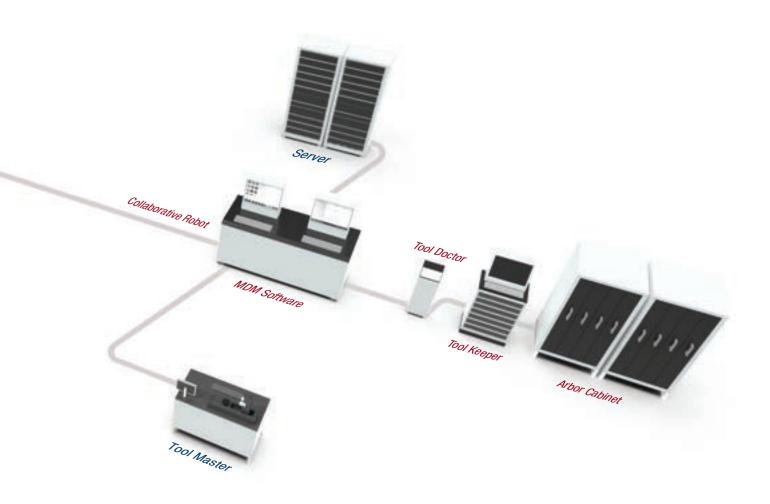
KORLOY Tools Selection Guide

Smart Factory

Smart factory solution map

Collaborative Robot

- Optimal for repeated work in small place
- Effective on works with heavy weight materials


Tool Master (Tool pre-setter)

- · Measuring the offset of tool length in advance
- Reduced tool setting time and downtime

MDM (Tool management S/W)

- Managing the tool holder information
- \rightarrow Cutting diameter, overall length, storage location
- Integrated management of tool, production, CAM, etc.

Tool Doctor (Monitoring system)

- Managing poor quality product manufacturing in mass production
- → Tool breakage, unprocessed item check, and re-processing
- · Managing tool life trends

Tool Keeper (Tool management equipment)

- · Managing tool releases day and night
- Systemic management of stock and inventory backup order
- · Transparent tool usage results management

Arbor Cabinet (Storage box exclusive for Arbors)

- Enhancing space efficiency and protecting tools (from damage or pollution of tools due to debris of work sites)
- Capable for running virtual warehouse with Tool Keeper (Managing position and quantity of tools)

⚠ For the safe metalcutting

- Use safety supplies such as protective gloves to prevent possible injury while touching the edge of tools.
- Use safety glasess or safety cover to hedge possible dangers. Inappropriate usage or excessive cutting condition may lead tool's breakage or even the fragment's scattering.
- Clamp the workpiece tightly enough to prevent its movement while its machining.
- Properly manage the tool change phase because the inordinately used tool can be easily broken under the excessive cutting load or severe wear, and it may threat the operator's safety.
- Use safety cover because chips evacuated during cutting are hot and sharp and may cause burns and cuts. To remove chips safely, stop machining, put on protective gloves, and use a hook or other tools.
- Prepare for fire prevention measures as the use of the non-water soluble cutting oil may cause fire.
- Use safety cover and other safety supplies because the spare parts or the inserts can be pulled out due to centrifugal force while high speed machining.

Vertrieb:

Martin Isak
Zerspanunsgtechnik + Industriebedarf
Telefon 02361-2 76 42
Telefax 02361-2 76 72
info@werkzeuge-isak.de
www.werkzeuge-isak.de

